Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments

철환원 박테리아에 의한 금속 환원 및 광물형성

  • Yul Roh (Environmental Sciences Division, Oak Ridge National Laboratory) ;
  • Hi-Soo Moon (Department of earth system Sciences, Yonsei University) ;
  • Yungoo Song (Department of earth system Sciences, Yonsei University)
  • Published : 2002.09.01

Abstract

Microbial metal reduction influences the biogeochemical cycles of carbon and metals as well as plays an important role in the bioremediation of metals, radionuclides, and organic contaminants. The use of bacteria to facilitate the production of magnetite nanoparticles and the formation of carbonate minerals may provide new biotechnological processes for material synthesis and carbon sequestration. Metal-reducing bacteria were isolated from a variety of extreme environments, such as deep terrestrial subsurface, deep marine sediments, water near Hydrothemal vents, and alkaline ponds. Metal-reducing bacteria isolated from diverse extreme environments were able to reduce Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI) using short chain fatty acids and/or hydrogen as the electron donors. These bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite ($Fe_3$$O_4$), siderite ($FeCO_3$), calcite ($CaCO_3$), rhodochrosite ($MnCO_3$), vivianite [$Fe_3$($PO_4$)$_2$ .$8H_2$O], and uraninite ($UO_2$). Geochemical and environmental factors such as atmospheres, chemical milieu, and species of bacteria affected the extent of Fe(III)-reduction as well as the mineralogy and morphology of the crystalline iron mineral phases. Thermophilic bacteria use amorphous Fe(III)-oxyhydroxide plus metals (Co, Cr, Ni) as an electron acceptor and organic carbon as an electron donor to synthesize metal-substituted magnetite. Metal reducing bacteria were capable of $CO_2$conversion Into sparingly soluble carbonate minerals, such as siderite and calcite using amorphous Fe(III)-oxyhydroxide or metal-rich fly ash. These results indicate that microbial Fe(III)-reduction may not only play important roles in iron and carbon biogeochemistry in natural environments, but also be potentially useful f3r the synthesis of submicron-sized ferromagnetic materials.

미생물에 의한 금속이온의 환원은 탄소와 금속의 생지화학적 순환에 영향을 줄 뿐만 아니라 또한 금속, 방사성원소, 그리고 유기물로 오염된 지하수와 토양의 정화에 있어서 중요한 역할 가능성을 시사하고 있다. 지구의 극한 환경(예: 심해저 퇴적, 알칼리성 호수 등)에서 서식하는 철환원 박테리아를 분리하여 금속이온의 환원과 광물 형성 등의 실험에 이용하여 본 결과에 의하면, 이들 철환원 박테리아는 Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI)이온 등을 환원시킬 뿐만 아니라, 자철석($Fe_3$$O_4$), 능철석($FeCO_3$), 방해석($CaCO_3$), 능망간석($MnCO_3$), 비비아나이트 [$Fe_3$($PO_4$)$_2$ .$8H_2$O], 우라니나이트(UO) 등의 광물을 형성한다. 철 환원 박테리아에 의한 광물 형성과 금속이온의 환원에 영향을 미치는 주요소는 대기의 조성, 화학 조성, 및 박테리아의 종이다. 호열성 철환원 박테리아는 철수화물과 금속이온(Co, Cr, Ni) 등을 동시에 환원시켜 금속 치환된 자철석을 합성하며, 또한 석탄회 등을 이용하여 탄산염 광물을 형성하여 대기 중의 이산화탄소를 고정하는 역할을 하기도 한다. 따라서 미생물에 의한 금속이온이 환원은 자연계에서 철과 탄소의 지화학적인 순환에 영향 미치며, 또한 미생물에 의한 자철석의 합성은 산업적으로 많은 이용가치가 있을 것으로 본다.

Keywords

References

  1. Baur, M.E., Hayes, J.M., Studley, S.A., and Walter, M.R. ( 1985) Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. Economic Geol., 80, 270-282.
  2. Bazylin ski, D.A., Frankel, R.B., and Jannasch, H.W. (1988) Anaerobic magnetite production by a marine magnetotatic bacterium . Nature, 334,518-519.
  3. Boone, D.R., Liu, Y., Zhao, ZJ., Balkwill, D.L.,Drake, G.R., Stevens, T.O., and Aldrich, H.e.( 1995) Bacillus infernus sp. nov., an Fe(III)and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Intern. J. Sys. Bacteriol., 45, 44 1-448.
  4. Bowman, J.P., McCammon, S.A., Brown, M.V.,Nichols, D.S., and McMeekin, T.A. (1997)Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol.,63, 3068-3078.
  5. Canfield, D.E., Jorgensen, B.B., Fossing, H., Glud, R., Gundersen, J., Ramsing, N.B., Thamdrup, B., Hansen, J.W., Nielsen, L.P., and Hall, P.O.J. (1993) Pathways of organic carbon oxidation in three continental margin sediments. Marine Geol., 113, 27-40.
  6. Colwell, F.S., Onstott, T.C., Delwiche, M.E.,Chandler, D., Fredrickson, J.K., Yao, QJ.,McKinley, J.P., Bone, D.R., Griffiths, R.,Phelps, T.J., Ringelberg, D., White, D.C.,LaFreniere , L., Balkwill , D., Lehman, R.M.,Konisky, J., and Long, P.E. ( 1997) Microorganisms from deep, high temperature sandstones: Constraints on microbial colonizatio n. FEMS Microbiol. Rev., 20, 425-435.
  7. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W.,Dong, H., Onstott , T.C., Hinman, N.W., and Li, S. ( 1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium . Geochim. Cosmochim. Acta, 62, 3239-3257.
  8. Fredrickson, J.K., Zachara, J.M., Kukkadapu, R.K.,Gorby, Y.A., Smith, S.C., and Brown, C.F.(2001) Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. Environ. Sci. Technol., 35, 703-712.
  9. Ferris, F.G., Wiese, R.G., and Fyfe, W.S. (1994)Precipitation of carbonate minerals by rnicroorganisms: Implications for silicate weathering and the global carbon dioxide budget. Geomicrobiol. J., 12, 1-13.
  10. Gorby, Y.A., Caccavo. FJr., and Bolton. H.Jr.(1998) Microbial reduction of cobalt(III) EDTA in the presence and absence of manganese(IV) oxide. Environ. Sci. Technol., 32, 244-250.
  11. Heijman, C.G., Holliger, C., Glaus, M.A., and Schwarzenbach, R.P. ( 1993) Abiotic reduction of 4-chlorobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol., 59, 4350-4353.
  12. Heijman, C.G., Grieder, E., Holliger, C., and Schwarzenbach, R.P. (1995) Reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns. Environ. Sci. Technol., 29, 775-783.
  13. Laverman, A.M., Switzer Blum, J., Schaefer, J.K., Phillips, E.J .P., Lovley, D.R., and Oremland, R.S. ( 1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors.Appl. Environ. Microbiol., 61, 3556-3561.
  14. Liu, S., Zhou, J., Zhang, C,L.; Cole, D.R.,Gajdarziska-Josifovska, M., and Phelps, T.J. (1997) Thermophilic Fe(III)- reducing bacteria from the deep subsurface: The evolutionary implications,Science, 277, 1106-1109.
  15. Lloyd, J.R. and Macaskie, L.E. (1997) Microbiallymediated reduction and removal of technetium from solution. Res. Microbiol., 148, 530-532.
  16. Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(III) reduction. Microbiol. Rev., 55, 259-287.
  17. Lovley, D.R. (1993) Dissimilatory metal reduction. Ann. Rev. Microbiol. , 47, 263-290.
  18. Lovely, D.R. (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbi ol., 14, 85-93.
  19. Lovley, D.R., Stolz, J.F., Nord, G.L.Jr., and Phillips, E.J.P. (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330, 252-254.
  20. Lovley, D.R., Phillips, E.J .P., and Lonergan, DJ. (1989) Hydroge n formation and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microb iol., 55, 700-706.
  21. Lovely, D.R. and Lonergan, D.J. (1990) Anaerobic oxidation of toluene , phenol, and p-cresol by the dissimilatory iron-reducing organism, GS- 15. Appl. Environ. Microbiol., 56, 1858-1864.
  22. Lovley, D.R. and Phillips, E.J.P. (1992) Biorerne-diation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol., 26, 2228-2234.
  23. Nealson, K.H. and Myers, C.R. (1990) Iron reduction by bacteria: A potential role in the genesis of banded iron formation. Am. J. Sci.,290A, 35 45.
  24. Nealson, K.H. and Saffarini, D. (1994) Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Ann. Rev. Microbiol., 48, 311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523
  25. Orernland, R.S. (1994) Biogeochemical transformation of selenium in anoxic environments. In:Frankenberger, W.TJ. and Benson S.N. (eds.),Selenium in the Environments, Marcel Dekker,Inc. New York. pp. 389-419.
  26. Roh, Y. and Moon, H.-S. (2000) Microbial synthesis of magnetite powder by iron reducing bacteria. J. Min. Soc. Korea., 13, 65-72.
  27. Roh, Y. and Moon, H.-S. (2001a) Iron reduction by a Psychrotolerant Fe(III)-reducing bacteria. Geosci. J., 5, 183-190.
  28. Roh, Y. and Moon, H.-S. (2001b) Microbial synthesis of cobalt-substituted magnetite nanoparticles by iron reducing bacteria. J. Min. Soc.Korea.,14,111-118.
  29. Roh, Y., Lauf, RJ., McMillan, A.D., Zhang, C, Rawn, C.J., Bai, J., and Phelps, T.J. (2001a)Microbial synthesis and the characterization of metal-substituted magnetite. Solid State Corn.,118, 529-534.
  30. Roh, Y., Phelps, T.J., McMillan, AD., and Lauf, RJ. (2001b) Utilization of biomineralization processes with fly ash for carbon sequestration In: Proceeding of U.S. DOE-First National Conference on Carbon Sequestration, U.S. Department of Energy National Energy Technology Laboratory, Pittsburgh, PA.
  31. Roh, Y., Vali, H., Stapleton, R.D., Phelps, T.J.,and Zhou, J. (2001c) Single-domain magnetite formation by a psychrotolerant iron reducing bacterium. American Society for Microbiology 101th General Meeting (Abstract), American Society for Microbiology, Washington, DC, pp.517.
  32. Roh, Y., Liu, S., Li, G., Huang, H., Phelps, T.J.,and Zhou, J. (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments, Appl. Environ. Microbiol., (in review). https://doi.org/10.1128/AEM.68.12.6013-6020.2002
  33. Slobcdkin, A., Reysenbach, A.L., Strutz, N.,Dreier, M., and Wiegel. J. (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int. J. Sys. Bacteriol., 47, 541-547.
  34. Stapleton, R.D.Jr., Sabree, Z.L., Palumbo, A.V.,Moyer, C., Devol, A., Roh, Y., and Jhou. J. (2002) Metabolic capabilities and distribution of Shewanella isolates from diverse marine environments. Limnol. Ocean. (in review).
  35. Tseng, H., Onstott, T.C., Burruss, R.C., and Miller. D.S. (1996) Constraints on the thermal history of Taylorsville Basin, Virginia, U.S.A.,from fluid-inclusion and fission-track analysis: Implications for subsurface geomicrobiology experiments. Chem. Geol., 127, 297-311.
  36. Walker, J.C.G. (1984) Subtoxic diagenesis in banded iron formation. Nature, 309, 340-342.
  37. Walker, J.C.G. (1987) Was the Archean biosphere upside down. Nature, 329, 710-712.
  38. Ye, Q., Roh, Y., Phelps, T.J., Zhou, J., Zhang, C.,and Fields, M.W. (2002) Ferric iron-reducing bacterium from alkaline leachate ponds containing salt and boric acid. American Society for Microbiology 102th General Meeting (Abstract), American Society for Microbiology,Washington, DC, pp 248.
  39. Zhang, C., Liu, S., Logan, J., Mazurner, R., and Phelps, T.J. (1996) Enhancement of Fe(III), Co(III), and Cr(VI) reduction at elevated temperatures and by a thermophilic bacterium. Appl. Biochem. Biotechnol., 57/58, 923-932.
  40. Zhang, C., Liu, S., Phelps, T.J., Cole, D.R.,Horita, J., Fortier, S.M., Elless, M., and Valley, J.W. (1997) Physiochemical, mineralogical, and isotopic characterization of magnetite-rich iron oxides formed by thermophilic iron-reducing bacteria. Geochim. Cosmochim. Acta, 61, 4621-4632.
  41. Zhang, C., Vali, H., Romanek, C.S., Phelps, T.J.,and Liu, S. (1998) Formation of single-domian magentite by a thermophilic bacterium. Am. Mineral., 83, 1409-1418. https://doi.org/10.2138/am-1998-11-1230
  42. Zhang, C., Stapleton, R.D., Zhou, J., Palumbo,A.V., and Phelps, T.J. (1999) Iron reduction by psychrotrophic enrichment cultures, FEMS Microbiol. Ecol., 30, 367-371.