한국어 구문 분석의 초기 단계로서 병렬구조의 해석은 파싱의 효율을 높일 수 있다. 본 논문은 병렬구조 해석을 위한 비지도식 언어에 독립적인 확률 모델을 제안한다. 이 모델은 병렬구조의 대칭성과 상호교환성에 근거한다. 대칭성은 같은 구조가 반복된다는 것이고, 교환성은 좌우 구성요소를 교환해도 같은 의미를 지닌다는 것이다. 병렬구조는 일반적으로 대칭성을 따르지만, 수식어의 성질에 따라서 한쪽만을 수식하는 비대칭적인 구조가 출현하기도 한다. 비대칭 병렬구조 해석을 위해서 추가적으로 수식관계 통계정보를 사용한다. 제안된 모델을 본 논문에서는 "와/과" 조사로 이루어진 한국어의 명사구 병렬구조를 해석하는데 사용되는 것[1]을 중점으로 보여준다. 지도적 방식에 의한 모델을 포함한 다른 모델들에 비해 효율적임을 실험적으로 보여준다.
말뭉치를 이용하여 통계적으로 의미역 결정(semantic role labeling)을 하기 위해서는, 의미역을 태깅하는 작업이 필수적이다. 그러나 한국어의 경우 의미역이 태깅된 대량의 말뭉치를 구하기 힘들며, 이를 직접 구축하기 위해서는 많은 시간과 노력이 필요한 문제점이 있다. 본 논문에서는 비지도 학습의 하나인 self-training 알고리즘을 적용하여, 의미역이 태깅되지 않은 말뭉치로부터 의미역을 결정하는 방법을 제안한다. 이를 위해, 세종 용언 전자사전의 격틀 정보를 이용하여 자동으로 학습 말뭉치를 구축하였으며, 확률 모델을 적용하여 점진적으로 학습하였다. 그 결과, 4개의 부사격 조사에 대해 평균적으로 83.00%의 정확률을 보였다.
Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.
In natural language, it is common that repetitive constituents in an expression are to be left out and it is necessary to figure out the constituents omitted at analyzing the meaning of the sentence. This paper is on recognition of boundaries of parallel noun phrases by figuring out constituents omitted. Recognition of parallel noun phrases can greatly reduce complexity at the phase of sentence parsing. Moreover, in natural language information retrieval, recognition of noun with modifiers can play an important role in making indexes. We propose an unsupervised probabilistic model that identifies parallel cores as well as boundaries of parallel noun phrases conjoined by a conjunctive particle. It is based on the idea of swapping constituents, utilizing symmetry (two or more identical constituents are repeated) and reversibility (the order of constituents is changeable) in parallel structure. Semantic features of the modifiers around parallel noun phrase, are also used the probabilistic swapping model. The model is language-independent and in this paper presented on parallel noun phrases in Korean language. Experiment shows that our probabilistic model outperforms symmetry-based model and supervised machine learning based approaches.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권12호
/
pp.3274-3292
/
2013
Unsupervised methods for image segmentation are recently drawing attention because most images do not have labels or tags. A topic model is such an unsupervised probabilistic method that captures latent aspects of data, where each latent aspect, or a topic, is associated with one homogeneous region. The results of topic models, however, usually have noises, which decreases the overall segmentation performance. In this paper, to improve the performance of image segmentation using topic models, we propose two topic masks applicable to topic assignments of homogeneous regions obtained from topic models. The topic masks capture the noises among the assigned topic assignments or topic labels, and remove the noises by replacements, just like image masks for pixels. However, as the nature of topic assignments is different from image pixels, the topic masks have properties that are different from the existing image masks for pixels. There are two contributions of this paper. First, the topic masks can be used to reduce the noises of topic assignments obtained from topic models for image segmentation tasks. Second, we test the effectiveness of the topic masks by applying them to segmented images obtained from the Latent Dirichlet Allocation model and the Spatial Latent Dirichlet Allocation model upon the MSRC image dataset. The empirical results show that one of the masks successfully reduces the topic noises.
An accurate trajectory prediction is a key to the safe and efficient operations of aircraft. One way to improve trajectory prediction accuracy is to develop a model for aircraft ground speed prediction. This paper proposes a generative model for posterior aircraft ground speed prediction. The proposed method fits the Gaussian Mixture Model(GMM) to historical data of aircraft speed, and then the model is used to generates probabilistic speed profile of the aircraft. The performances of the proposed method are demonstrated with real traffic data in Incheon Flight Information Region(FIR).
Weighted network link prediction is a challenge issue in complex network analysis. Unsupervised methods based on local structure are widely used to handle the predictive task. However, the results are still far from satisfied as major literatures neglect two important points: common neighbors produce different influence on potential links; weighted values associated with links in local structure are also different. In this paper, we adapt an effective link prediction model-local naive Bayes model into a weighted scenario to address this issue. Correspondingly, we propose a weighted local naive Bayes (WLNB) probabilistic link prediction framework. The main contribution here is that a weighted cluster coefficient has been incorporated, allowing our model to inference the weighted contribution in the predicting stage. In addition, WLNB can extensively be applied to several classic similarity metrics. We evaluate WLNB on different kinds of real-world weighted datasets. Experimental results show that our proposed approach performs better (by AUC and Prec) than several alternative methods for link prediction in weighted complex networks.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권1호
/
pp.81-98
/
2013
Since Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA) were introduced, many revised or extended topic models have appeared. Due to the intractable likelihood of these models, training any topic model requires to use some approximation algorithm such as variational approximation, Laplace approximation, or Markov chain Monte Carlo (MCMC). Although these approximation algorithms perform well, training a topic model is still computationally expensive given the large amount of data it requires. In this paper, we propose a new method, called non-simultaneous sampling deactivation, for efficient approximation of parameters in a topic model. While each random variable is normally sampled or obtained by a single predefined burn-in period in the traditional approximation algorithms, our new method is based on the observation that the random variable nodes in one topic model have all different periods of convergence. During the iterative approximation process, the proposed method allows each random variable node to be terminated or deactivated when it is converged. Therefore, compared to the traditional approximation ways in which usually every node is deactivated concurrently, the proposed method achieves the inference efficiency in terms of time and memory. We do not propose a new approximation algorithm, but a new process applicable to the existing approximation algorithms. Through experiments, we show the time and memory efficiency of the method, and discuss about the tradeoff between the efficiency of the approximation process and the parameter consistency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.