
 

www.kips.or.kr                                                                                                 Copyright© 2017 KIPS 

       
 
         

 
 

 

Weighted Local Naive Bayes Link Prediction 
 

 

JieHua Wu*, GuoJi Zhang**, YaZhou Ren***, XiaYan Zhang**, and Qiao Yang** 

 

 

Abstract 
Weighted network link prediction is a challenge issue in complex network analysis. Unsupervised methods 
based on local structure are widely used to handle the predictive task. However, the results are still far from 
satisfied as major literatures neglect two important points: common neighbors produce different influence on 
potential links; weighted values associated with links in local structure are also different. In this paper, we 
adapt an effective link prediction model—local naive Bayes model into a weighted scenario to address this 
issue. Correspondingly, we propose a weighted local naive Bayes (WLNB) probabilistic link prediction 
framework. The main contribution here is that a weighted cluster coefficient has been incorporated, allowing 
our model to inference the weighted contribution in the predicting stage. In addition, WLNB can extensively 
be applied to several classic similarity metrics. We evaluate WLNB on different kinds of real-world weighted 
datasets. Experimental results show that our proposed approach performs better (by AUC and Prec) than 
several alternative methods for link prediction in weighted complex networks. 
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1. Introduction 

Link [1] is a bridge which connects nodes in complex network. The rich information of links plays a 
key role in complex network analysis and benefits a wide range of applications. Take some real-world 
networks for example. In social networks, people engage in social interactions by commenting, liking, 
mentioning and following each other. They share thoughts, beliefs, opinions, news, and even check-ins 
through their social relationships [2]. In protein-protein interaction networks [3], protein molecular is 
node, and mining interactions between nodes is helpful to reveal the protein function and determine 
biological mechanism. Moreover, in bibliographic networks, the heterogeneous type of collaborative 
relations is a useful tool to detect the scientist community (circle) [4] and model topic diffusion [5]. 

Therefore, the study of link information is of crucial importance to complex network analysis. One 
core task is usually called link prediction [6], which leverages the given network structure to infer the 
potential links (missing links). To achieve this goal, each potential link is assigned a similarity score—
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the more similar the pair of nodes are, the more likely they are linked. The challenge is how to construct 
a robust similarity function. One effective way is to build local topological measures, such as the 
Common Neighbors (CN) [6], Adamic and Adar (AA) [7], the Jaccard metric [8], etc. 

However, in realistic situation, there exists some networks of which the links strength are unequally 
treated. These networks are called the weighted networks [9]. In the context of the aforementioned 
bibliographic networks, the link weight indicates the number of published papers. It is obvious that two 
scientists are more likely to be in the same research circle if they share a higher “weight”. Thus, some 
other literatures [10,11] tried to solve such problem and proposed corresponding weighted formulation 
of aforementioned similarity measures. Such solution only aimed to find the weights associated with 
links but ignored the difference among their common neighbors. In other words, each common 
neighbor is treated equally to the linked likelihood—the node weight is missing. Fig. 1 gives a brief 
illustration and presents the problem addressed in this paper. The left figure shows the example in 
which the potential link (red node) with a local structure (common neighbors, green nodes) needed to 
be predicted by CN measure. In CN measure, the number of common neighbor is the similarity 
function score. In the middle figure, the shadow associated with green nodes denotes their different 
properties (e.g., degree, etc.). If we use CN measure, all the three toy sub-figures have the equal score 3, 
indicating that they have the same link formation possibility. Naturally, it is not conforming to our 
basic intuition because different weighted information of green nodes is not considered. 

 

 
 

Fig. 1. Illustrative toy example of link prediction in different types of networks. 
 
Consequently, a local naive Bayes (LNB) model [12] has recently been introduced as a probabilistic 

model for link prediction. LNB assumes the link probability is conditionally depended on the weight of 
local common neighbors. In LNB, two potential links with the same scale of common neighbors may 
have different link likelihoods. However, as the right figure of Fig. 1 shows, LNB has the drawback of 
not taking the link weighted information into account. Consequently, the question we investigate in this 
research is whether the LNB algorithm can be adapted to a weighted network scenario to overcome the 
limitation as discussed above. Specifically, we precisely define the weighted network link prediction 
problem and build a new connection between such problem and LNB model, i.e., a weighted local naive 
Bayes (WLNB) model has been proposed. WLNB not only takes advantage of LNB model to measure 
different roles of common neighbors (in node aspect), but also is capable of incorporating diverse link 
weighted information into a local similarity framework (in link aspect). Our major contributions are 
summarized as follows. (a) We formulate a novel problem of LNB learning method for weighted 
network link prediction. (b) We incorporate the weighted cluster coefficient into the proposed model. 
(c) We extend WLNB to other similarity baselines. (d) We empirically evaluate the effectiveness and 
efficiency of WLNB on several weighted real-world datasets. To the best of our knowledge, we are the 
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first to study how to extend LNB theory into a weighted network link prediction problem. 
We first introduce the related work in Section 2. Then, Section 3 defines the link prediction task as an 

unsupervised learning problem and summarizes the notation used through this paper. In Section 4, we 
start with the local naive Bayes link prediction model, and then propose WLNB to capture the weighted 
information and extend it to other similarity-based methods. After that, we conduct experiments in 
Section 5. We finally conclude this paper in Section 6. 

 
 

2. Related Work 

Link prediction is one of the core techniques of complex network analysis, which has been widely 
used in many applications [5,13,14]. Related literatures on link prediction can be classified into two 
categories: unsupervised link prediction [15] and supervised link prediction [16]. General unsupervised 
link prediction approaches are based on similarity or proximity between nodes. Liben-Nowell and 
Kleinberg [6] did a great ground breaking survey. They introduced various similarity measures, such as 
Common Neighbors (CN), Katz, etc. Afterwards, Zhou et al. [2,12,17] improved such baselines by 
developing some new predictors including a local naive Bayes link prediction model. Lichtenwalter et 
al. [18] also designed a flow based model which has significant improvement over those baselines. Most 
of the above works focused on estimating similarity in unweighted networks. However, they did not 
consider that weights are always associated with links in real complex networks [19]. 

Further studies have been done to capture the weighted information for prediction. Yang et al. [20] 
improved the existing similarity methods and made them more suitable for weighted networks. Wind 
and Morup [4] proposed a Poisson-based model to infer the missing links. Murata and Moriyasu [11] 
introduced an improved method for predicting links based on weighted proximity measures of social 
networks. The major difference between our proposed WLNB and the aforementioned methods is that 
we consider common neighbors’ contribution with weighted information. On the other hand, De Sa 
and Prudencio [21] investigated the relevance of using weight to improve supervised link prediction. 
However, this algorithm mainly focuses on classification problem, while our effort is trying to build an 
unsupervised framework. 

 
 

3. Preliminary 

In this section, we first give several necessary definitions and then present a formal definition of the 
problem. We use G=�V, E,	W� to denote the structure of complex network, where V is a set of nodes 

(vertex) and E⊆V×V is a set of links (edges) between nodes. Each link eij=<vi,vj>∈E represents a 
relationship between node  v� 	 and v�. Let W be a weighted matrix, where each element w��,��,represents 
the weight value associated with link e��. We use N(vi) to indicate the set of neighboring nodes of  v� , 
then the common neighbor set of  v� 	 and  v� is defined as CN(vi,vj). Let T(v�) denote the number of the 
triangles of node v� , which is defined as the element count of {< v� , v� >∈ E| < v� , v� >∈ E, < v� , v� >

∈ E}.  Specifically, in real complex networks, links could be self-links, undirected or directed. We focus 
on undirected networks in this paper. 



JieHua Wu, GuoJi Zhang, YaZhou Ren, XiaYan Zhang, and Qiao Yang 

 

 

J Inf Process Syst, Vol.13, No.4, pp.914~927, August 2017 | 917 

Predicting tasks. We adopt the ratio r to partition G into a training  G�  and a predicting set G�. In 
such process, we randomly choose r = 80% and leave the other 20% as missing links for test. The 

problem of link prediction is to build a probabilistic model � based on G� and to decide whether 

potential links exist or not: 
 

�(G�,G�) → {0,1} 
 

In the predicting stage, the model function �  will output a score to demonstrate the link 

formulation probability by leveraging the information from the training network	G�. We then infer 

the binary existence {0,1�	of relationships in the target network G�	with the ground truth. 
 
 

4. The Proposed Model 

4.1 The Basic Model 
 

Before going to detail about how to model the weighted structure information, we first give a brief 
review of LNB link prediction model [12], which has been proved to be effective in handling link 
prediction task. LNB assumes the link formulation probability is conditionally depending on its local 
structural property—common neighbors. Then, the posterior probability between nodes v� 	 and  v� can 
be respectively given by: 

 

           P�eij�CN(vi,vj)�= P(eij)

P(�N(vi,vj))
∙P�CN(vi,vj)�eij�                                        (1) 

 

P�eij	�CN(vi,vj)�= P(eij	 )

P(CN(vi,vj))
∙P�CN(vi,vj)�eij	�                                                 (2) 

 
where P(eij)  and P(eij	 )  denote the constant network property, P�CN(vi,vj)�eij�  and P�CN(vi,vj)�eij	� 
control the CN(vi,vj) contribution, respectively. A popular choice is to substantiate Eq. (1) and Eq. (2). 
Then, the similarity score svi,vj

LNB between vi	 and  vj becomes: 

 

                         svi,vj
LNB= P(eij) 

P(eij	 ) 
 × P
CN(vi,vj)�eij	 �

P
CN(vi,vj)�eij� = P(eij) 

P(eij	 ) 
 ∏ P(eij)

P(eij	 )ω∈CN(vi,vj)������������
× ∏ P
eij�ω�

P
eij	 �ω�ω∈CN(vi,vj)����������
                           (3) 

 constant value contribution value 
 

where	ω denotes the common neighbors of  vi	 and  vj. The first part of Eq. (3) is a constant value and 
the factor in the bracket is the common neighbors’ contribution (weight) to the potential link < vi,vj >. 

 

4.2 Weighted Local Link Prediction Model 
 

In Eq. (3), the conditional probability P�eij�ω� means that given a common neighbor	ω, the link 
formulation possibility among its neighbors, which is equal to the definition of local cluster coefficient 
cω: 
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P�eij�ω�=cω= 2T(ω)
|N(ω)|×(|N�ω�|-1)

                                                   (4) 

 
In this equation, the clustering coefficient is defined without taking into consideration the link 

weights as T(ω) and N�ω�	only care about the correlation among nodes. The loss of weight information 
could lead to obscureness of the latent information in local structure. To illustrate such disadvantage, let 
us consider the right figure in Fig. 1 again, where each link is assigned a weight value. It is clearly that 
the potential links formulation probability is determined by its local structure, including not only node 
influence but also weighted contributions of links. If we assume links are unweighted, some potential 
and useful information (weighted value) will be missed. 

Thus, the performance of LNB in unweighted network may be different from the weighted one as the 
link weighted in the local structure should be considered. Therefore, a WLNB link prediction model is 
proposed to overcome the limitation of LNB. As such model is based on CNs, we also call it WLNBCN. 
The key idea of WLNBCN is to adapt a weighted cluster coefficient (WCC) [19] into the LNB model. 
The task now turns to extend cω into a weighted scene. 

First, we define node strength n�vi 		which measures the strength of nodes vi	in terms of the total 
weight of their connections: 

 

n�vi =
∑ wvi,vjvj∈N(vi)                                                              (5) 

 

where vi	 is the neighbors of  vj. If the weighted network is considered as unweighted network, n�vi 
turns to the degree of vi	, then the WCC can be defined as: 

 

cω
w= 1

nsω(kω-1)
∑

wvi,ω+wω,vj

2
avi,vj(vi,vj) avi,ωaω,vj                                (6) 

 

In such equation,	ω	is the common neighbor of node vi	 and  vj and kω is the degree of	ω, avi,vj 	is 
binary symbol, where 1 means there exists a link between vi	, vj and 0 represents the opposite. 

∑
wvi,ω+wω,vj

2
avi,vj(vi,vj) avi,ωaω,vj is the triangle number in such local structure formulated by the potential 

links and its common neighbors. The normalization factor nsω(kω-1) accounts for the weight of each 
edge times the maximum possible number of triangles it may participate, and it ensures that 0≤cω

w ≤

1	[19]. 
This is a measure of the local cohesiveness that takes into account the importance of the clustered 

structure on the basis of weight information actually found on the local triples [19]. Indeed, cω
w is 

counting for each triple formed in the neighborhood of the node vi	. In this way, we are not just 
considering the number of closed triangles in the neighborhood of a node but also their total relative 
weight with respect to the node strength. 

As P(eij) 

P(eij	 ) 
 is the ratio r between the number of connection links |E| and disconnection links scale 

|V|(|V|-1) 2⁄ -E, the left part P(eij) 

P(eij	 ) 
 ∏ P(eij)

P(eij	 )ω∈CN(vi,vj)
 of Eq. (3) becomes a constant value |CN(vi,vj)|r, 
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Combing Eq. (3) and Eq. (4), the right part ∏ P
eij�ω�
P
eij	 �ω�ω∈CN(vi,vj)

 can be transformed to ∑ log
cω

�cωω∈CN(vi,vj)
. 

Then we substitute cω
w	with cω and find that directly realizing Eq. (3) is difficult, we normalize the right 

part through a logarithmic function that maps it to a value between 0 and 1. Then the similarity in 
WLNBCN model can be calculated as: 

 

svi,vj
WLNBCN=|CN(vi,vj)|×logr+∑ log cωw

1-cω
wω∈CN(vi,vj)
                                (7) 

 
where the right part is the weighted contribution of common neighbors and the outcome of the whole 
process is the similarity score between node  vi	 and  vj. 

 
4.3 Model Extension 
 

To further prove the effectiveness of the proposed WLNB model, we try to extend it to other classic 
similarity metrics, such as AA (Adamic and Adar) [7] and RA (Resource Allocation) [15]. Thus, the 
corresponding WLNB forms of AA and RA metrics respectively are: 

 

svi,vj
WLNBAA=∑ logr

log|N(ω)|ω∈CN(vi,vj)
+∑

log cωw

1-cωw

log|N(ω)|ω∈CN(vi,vj)
                                    (8) 

 

svi,vj
WLNBRA=∑ logr

N(ω)ω∈CN(vi,vj)
+∑

log cωw

1-cωw

|N(ω)|ω∈CN(vi,vj)
                                 (9) 

 
 

5. Experiments 

In this section, we conduct experiments to evaluate the robustness and effectiveness of the proposed 
WLNB. We first build up the experiment setting and introduce several weighted complex networks. 
Then we compare the performance of WLNB with other baseline methods. 

 
5.1 Evaluation Settings 
 

In a weighted network G, we randomly sample r% as the training set and the remaining 1 − r% as 
test set. The default value of r	is set to be 80. Then the random sampling is carried out 10 times 
independently and the average results are reported. Two widely used evaluation metrics, i.e., precision 
(Prec@N) and area under curve (AUC) are adopted to evaluate the link prediction performance. 
Specifically, Prec@N is defined as the ratio between the ground truths with candidate set scale N, the 
default value N is set to be 1000. AUC is equally to K�+0.5K	 K⁄ . In K	times of independent comparisons 
between potential links and non-existing links, the former has K� times higher similarity and K	 times 
equal. We compare our model with the following alternative baselines. 

 
� The weighted format of some classic baseline methods [22].  
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WCN(vi,vj)=∑
wvi,ω

+wω,vj

2ω∈CN(vi,vj)
,	WAA(vi,vj)=∑

wvi,ω
+wω,vj

����	(�n�ω)ω∈CN(vi,vj)
 ,

WRA(vi,vj)=∑
wvi,ω

+wω,vj

n�ωω∈CN(vi,vj)
 

� Other quantitative baselines [4].   

WJaccard(vi,vj)=∑
wvi,ω

+wω,vj

nsvi
+nsvj

-wvi,vj
ω∈CN(vi,vj)

 WSalton(vi,vj)=∑
wvi,ω

+wω,vj

�nsvi×nsvjω∈CN(vi,vj)
 

� The unweighted format of LNB models (which are sometimes called LNBs): LNBCN, LNBAA, 
LNBRA. 
WLNBCN, WLNBAA and WLNBRA are our proposed metrics and WLNBs denotes the 
summarization of these three metrics. 

 

5.2 Datasets 
 

We conduct experiments on five classic real-world weighted network datasets in this paper. 

� astro-ph [23]. It contains the collaboration network of scientists posting preprints on the 
astrophysics archive at www.arxiv.org, 1995–1999, as compiled by M. Newman. The network is 
weighted, with weights assigned as described in the original papers. 

� cond-mat [23]. It contains a collaboration network of scientists posting preprints on the 
condensed matter archive at www.arxiv.org. This version is based on preprints posted to the 
archive between January 1, 1995 and June 30, 2003. 

� hep-th [23]. It contains the collaboration network of scientists posting preprints on the high-
energy theory archive at www.arxiv.org, 1995–1999. The network is weighted, with weights 
assigned also as described in the original papers. 

� citation [24]. It is a geographical view of collaboration network at the city level, where the nodes 
are cities and weighted undirected links indicate the presence and frequency of collaborations 
between scholars of different cities. 

� facebook [25]. The Facebook-like Forum Network was attained from the same online community 
as the online social network. In this network, a weight can be assigned to the ties based on the 
number of messages or characters that a user posted to a topic. 

 
The statistics of the datasets are shown in Table 1. 
 

Table 1. Statistics of datasets 

Dataset Nodes Links Average degree Average weighted 

astro-ph 7171 56547 7.6529 2 .8005 

cond-mat 5638 20912 1.8841 3.2632 

hep-th 8255 15751 35.878 1.8334 

citation 226 28869 286.6814 27443 

facebook 897 142760 317.5362 37.4516 
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Table 2. The AUC and Prec@N performance of different methods 

 
WCN WAA WRA WSalton WJaccard LNBCN LNBAA LNBRA WLNBCN WLNBAA WLNBRA 

AUC            

astro-ph 0.971 0.973 0.973 0.969 0.969 0.972 0.971 0.972 0.972 0.977 0.978 

cond-mat 0.928 0.929 0.926 0.924 0.926 0.923 0.927 0.924 0.927 0.928 0.928 

hep-th 0.906 0.913 0.912 0.911 0.911 0.907 0.904 0.912 0.908 0.909 0.913 

citation 0.893 0.897 0.926 0.366 0.541 0.142 0.142 0.142 0.996 0.997 0.959 

facebook 0.811 0.835 0.832 0.458 0.908 0.981 0.982 0.992 0.974 0.989 0.998 

Prec            

astro-ph 0.793 0.888 0.952 0.447 0.619 0.952 0.963 0.991 0.947 0.997 0.998 

cond-mat 0.289 0.448 0.664 0.365 0.453 0.666 0.803 0.757 0.672 0.812 0.777 

hep-th 0.242 0.319 0.426 0.168 0.213 0.517 0.656 0.626 0.521 0.798 0.698 

citation 0.863 0.866 0.788 0.569 0.699 0.101 0.101 0.092 0.896 0.904 0.912 

facebook 0.899 0.912 0.896 0.924 0.894 0.943 0.935 0.941 0.937 0.948 0.948 

 
 

5.3 Performance Comparison 
 

Table 2 summarizes the AUC and Prec@1000 (we also refer to Prec for convenience) of all the 
methods in the prediction task. The higher the AUC and Prec are, the better performance the model 
achieves. In each row, the best results are highlighted in boldface. We can clearly observe that the best 
performance is constantly achieved by WLNBs on both AUC and Prec. If we overlook the model 
difference, WLNBCN, WLNBAA, WLNBRA on average achieve 0.051, 0.043, 0.039 higher AUC and 
0.249, 0.182, 0.122 higher precision comparing to the corresponding WCN, WAA, WRA, respectively. 
Such better performance can be ascribed to the fact that leveraging the role of common neighbors from 
the weighted network. On the other hand, we observe that the LNBs perform relative poor in two 
metrics by 0.231, 0.1752, 0.181 higher AUC and 0.1694, 0.168, 0.162, respectively. It shows that LNBs 
might not work perfectly in cases where link weight exists. WJaccard and WSalton perform almost the 
worst among all the approaches. The introduction of union of common neighbor is a possible reason 
for this performance. Another phenomenon is that the performance of WLNBs is correlated with the 
model specification as WLNBAA and WLNBRA perform slightly better than WLNBCN in almost all 
cases. This is mainly because that the degree information is considered in WLNBAA and WLNBRA. 
These results support the fact that our proposed model can take advantage of the common neighbors 
influence and link weight for the prediction task. 

To evaluate the statistical significance, we perform a t-test between WLNBs and the best competitive 
method of citation network in the predictive task. The result is 2.5365e320, which suggests the 
significance of our proposed model. We also have the similar observations on other datasets. 

We now evaluate the variation of performance of the framework with different proportions of 
training data. Such process will help assess the robustness of WLNBs. We vary the proportion r from 
50% to 80% in step 5% for learning and show the results of different methods on facebook and cond-
mat in Fig. 2. In each subgraph, the x-axis indicates the training rate and the y-axis represents the AUC 
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and Prec. We make the following observation. (1) The AUC performance of all the methods decreases 
when introduces more training instance and contrast phenomenon appears in Prec. For example, on 
facebook, the performance decreases down 1.28% to 3.17% in terms of Prec and increases up 2.13% to 
17.26% in terms of AUC. We can see that more training data is beneficial for increasing the AUC 
performance and is helpless to Prec metric. (2) WLNBs consistently outperforms all baselines with 
significant gain in most cases. The reason is that the alternative metrics lack discriminative features 
stemming from common neighbors. WLNBs takes its advantage and achieves better performance. As 
aforementioned, WJaccard and WSalton undoubtedly stay in the bottom level. (3) It can also be 
observed that all the three methods of WLNBs perform stable and have small amplitudes. Even on 
cond-mat dataset, the framework outperforms the nearest baseline for tiny proportions for training 
data (50%), demonstrating that it performs well for low training data sizes. Such performance shows 
consistent trends in all five datasets. In summary, the results demonstrate that the framework can stably 
learn from a small training set, and it effectively utilizes training data to predict links in weighted 
scenario. The framework WLNBs consistently performs well across all proportions of training data and 
hence is robust to its variations. 

 

   
(a) 

 

   
(b) 

Fig. 2. Performance of AUC and Prec by varying the percentage of training network: (a) facebook, (b) 
cond-mat. The x-axis indicates the training size, and the y-axis represents the corresponding score.  

A
U
C
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(a) (b) 

Fig. 3. The ROC curve: (a) cond-mat, (b) hep-hp. The x-axis indicates TPR (true positive rate), and the 
y-axis represents the FPR (false positive rate). 

 

     
 (a)  (b) 
Fig. 4. @N performance: (a) cond-mat, (b) hep-hp. The x-axis indicates precision, and the y-axis represents 
the N value. 

 

5.4 Performance Analysis 
 

First we extend the experiments to show the advantage of WLNBs against LNBs by ROC (receiver 
operating characteristic curve). A ROC curve is generated by plotting the TPR (true positive rate) on 
the vertical axis and the FPR (False Positive Rate) on the horizontal orient. In ROC, the closer the curve 
follows the left-hand border and then the top border of the ROC space, the more accurate the test. We 
show the results on cond-mat and hep-hp dataset in Fig. 3. All the methods did well in the predictive 
task and we observe only small difference. The major differences between WLNBs and LNBs appear in 
their different weighted and unweighted formats since WLNBs consistently lie below the corresponding 
LNBs. For instance, on hep-hp dataset, we can observe that the yellow lines (WLNBAA) is always on 
top of blue lines (LNBAA), which indicates that our proposed model has the largest area under its 
curve. Similar phenomenon proves the effectiveness of WLNBs again.   

Secondly, as the ranking task is to find which potential links have the highest similarity score and 
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whether such set of high score is the ground truth. Thus, in this paragraph we evaluate the experiment 
by Top-N evaluation and set N=100 to 1000 of Prec@N in steps of 50, respectively. We only report the 
experimental results on cond-mat and hepth datasets since we have similar observations on other 
datasets. The results are reported in Fig. 4. It can be seen that three kinds of WLNBs still lie below the 
corresponding WCN, WAA, WRA and LNBs by a larger margin when N goes up. This matches our 
intuition as they neither ignore the common neighbors’ different influence nor neglect the diverse link 
weight while WLNBs captures both weights, and thus obtains better performance. Besides, with the 
increment of N, the performance of all the methods becomes worse. For example, on cond-mat dataset, 
the accuracy of WLNBAA decreases gradually from 1 to 0.805 as N increase from 100 to 1000. This is 
because more noisy information is added as the candidate set becomes larger. This matches the 
intuition of link prediction—the more similar the pair of users is, the more likely they are linked. 
Besides, comparing WLNBAA with WLNBRA, the performance of both methods stands almost the 
same place (0.998 and 0.972) on top as N is 100. When N decreases, both performance drops. However, 
we can observe that the decreasing rate of WLNBAA is smaller than that of WLNBRA when N gets 
larger, which means WLNBAA is less sensitive to N and holds a stable performance. 

 
 

6. Conclusions and Future Work 

In this work, we have introduced WLNB, an unsupervised link prediction model that overcomes the 
limitation of similarity based weighted metrics. We first introduce the prediction problem using a local 
Bayes model and then propose a weighted format of LNB by considering the weighted network property: 
weighted cluster coefficient. Then we extend WLNB to other two representative local similarity metrics to 
validate the robustness of our proposed model. The effectiveness and stability of WLNB are demonstrated 
through extensive experiments conducted on real-world weighted networks. 

Building an effective link prediction model for weighted network is important for complex network 
analysis. We are interested in incorporating other Bayes machine learning models to enhance the 
prediction task in future work. It is also interesting to extend this work to multi-layer weighted network 
and investigate the layer correlation into the proposed model. 
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