• 제목/요약/키워드: Unsupervised Neural Network

검색결과 130건 처리시간 0.021초

RAM 기반 신경망을 이용한 필기체 숫자 분류 연구 (A Study on Handwritten Digit Categorization of RAM-based Neural Network)

  • 박상무;강만모;엄성훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.201-207
    • /
    • 2012
  • RAM 기반 신경망은 2진 신경망(Binary Neural Network, BNN)에 복수개의 정보 저장 비트를 두어 교육의 반복 횟수를 누적하도록 구성된 가중치를 가지지 않는(weightless) 신경회로망으로서 한 번의 교육만으로 학습이 이루어지는 효율성이 뛰어난 신경회로망이다. 지도 학습에 기반을 둔 RAM 기반 신경망은 패턴 인식 분야에는 우수한 성능을 보이는 반면, 비지도 학습에 의해 패턴을 구분해야 하는 범주화 연구에는 적합하지 않은 모델로 분류된다. 본 논문에서는 비지도 학습 알고리즘을 제안하여 RAM 기반 신경망으로 패턴 범주화를 수행한다. 제안된 비지도 학습 알고리즘에 의해 RAM 기반 신경망은 입력 패턴에 따라 자율 학습하여 스스로 범주를 생성할 수 있으며, 이를 통해 RAM 기반 신경망이 지도 학습과 비지도 학습이 모두 가능한 복합 모델임을 증명한다. 실험에 사용한 학습 패턴으로는 0에서 9까지의 오프라인 필기체 숫자로 구성된 MNIST 데이터베이스를 사용하였다.

비지도 학습 방법을 적용한 모듈화 신경망 기반의 패턴 분류기 설계 (A Design of Cassifier Using Mudular Neural Networks with Unsupervised Learning)

  • 최종원;오경환
    • 인지과학
    • /
    • 제10권1호
    • /
    • pp.13-24
    • /
    • 1999
  • 논문에서는 모듈화 신경 을 이용한 비지도 학습방법의 분류기를 제안한다. 각 모듈은 데이터의 통계학적인 분석의 결과로 설계되어져서, 데이터의 독립적인 군집들을 나타내게 된다. 이런 신경의 독립적인 분류 결과와 근접거리 척도를 이용한 유사도 측정을 통해 더욱 정확한 분류를 가능케 하며, 오 분류를 하는 모듈을 삭제함으로써 계산 을 줄인다. 이런 과정을 통해 신경 에 사용되는 각종 변수에 대한 별다른 조사 과정 없이 최상의 성능을 발휘하는 신경 에 준 는 성능을 가진 신경 망을 구축했다.

  • PDF

RAM 기반 신경망의 비지도 학습에 관한 연구 (A Study on Unsupervised Learning Method of RAM-based Neural Net)

  • 박상무;김성진;이동형;이수동;옥철영
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.31-38
    • /
    • 2011
  • RAM 기반 3-D 신경망은 2진 신경망(Binary Neural Network, BNN)에 복수개의 정보 저장 비트를 두어 교육의 반복 횟수를 누적하도록 구성된 가중치를 가지지 않는 신경회로망으로서 한 번의 교육만으로 학습이 이루어지는 효율성이 뛰어난 신경회로망이다. MRD(Maximum Response Detector) 기법을 이용한 3-D 신경망의 인식 방법은 지도 학습에 기반을 둔 것으로서 학습을 통해 신경망 스스로가 범주를 구분할 수 없으며 잘 구분된 범주의 학습 데이터를 통해서만 성능을 발휘할 수 있다. 본 논문에서는 기존 3-D 신경 회로망에 학습 데이터의 구분 없이 신경망 자체가 입력 패턴에 따라 학습하여 범주를 구분하는 비지도 학습 알고리즘을 제안한다. 제안된 비지도 학습 알고리즘에 의해 신경회로망은 판별자의 수를 스스로 조절할 수 있는 구조를 가지게 되며 이는 망의 유연한 확장성을 보장한다. 0에서 9까지의 다중 패턴으로 구성된 오프라인 필기체 숫자를 무작위로 추출하여 학습 패턴으로 인식 실험을 수행하였으며 실험을 통해 신경망이 스스로 비지도 학습에 의해 판별자의 수를 결정하게 되며 이것은 신경망이 각각의 필기체 숫자에 대한 개념을 가지게 되는 것으로 해석할 수 있다.

작물 분류를 위한 딥러닝 기반 비지도 도메인 적응 모델 비교 (Comparison of Deep Learning-based Unsupervised Domain Adaptation Models for Crop Classification)

  • 곽근호;박노욱
    • 대한원격탐사학회지
    • /
    • 제38권2호
    • /
    • pp.199-213
    • /
    • 2022
  • 비지도 도메인 적응은 연단위 작물 분류를 위해 매년 반복적으로 양질의 훈련자료를 수집해야 하는 비실용적인 문제를 해결할 수 있다. 이 연구에서는 작물 분류를 위한 딥러닝 기반 비지도 도메인 적응 모델의 적용성을 평가하였다. 우리나라 마늘, 양파 주산지인 합천군과 창녕군을 대상으로 무인기 영상을 이용한 작물 분류 실험을 통해 deep adaptation network (DAN), deep reconstruction-classification network, domain adversarial neural network (DANN)의 3개의 비지도 도메인 적응 모델을 정량적으로 비교하였다. 비지도 도메인 적응 모델의 분류 성능을 평가하기 위해 소스 베이스라인 및 대상 베이스라인 모델로 convolutional neural networks (CNNs)을 추가로 적용하였다. 3개의 비지도 도메인 적응 모델은 소스 베이스라인 CNN보다 우수한 성능을 보였으나, 소스 도메인 영상과 대상 도메인 영상의 자료 분포 간 불일치 정도에 따라 서로 다른 분류 성능을 보였다. DAN의 분류 성능은 두 도메인 영상 간 불일치가 작을 때 다른 두 모델에 비해 분류 성능이 높은 반면에 DANN은 두 도메인 영상 간 불일치가 클 때 가장 우수한 분류 성능을 보였다. 따라서 신뢰할 수 있는 분류 결과를 생성하기 위해 두 도메인 영상의 분포가 일치하는 정도를 고려해서 최상의 비지도 도메인 적응 모델을 선택해야 한다.

시간에 따라 변화하는 빗줄기 장면을 이용한 딥러닝 기반 비지도 학습 빗줄기 제거 기법 (Deep Unsupervised Learning for Rain Streak Removal using Time-varying Rain Streak Scene)

  • 조재훈;장현성;하남구;이승하;박성순;손광훈
    • 한국멀티미디어학회논문지
    • /
    • 제22권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Single image rain removal is a typical inverse problem which decomposes the image into a background scene and a rain streak. Recent works have witnessed a substantial progress on the task due to the development of convolutional neural network (CNN). However, existing CNN-based approaches train the network with synthetically generated training examples. These data tend to make the network bias to the synthetic scenes. In this paper, we present an unsupervised framework for removing rain streaks from real-world rainy images. We focus on the natural phenomena that static rainy scenes capture a common background but different rain streak. From this observation, we train siamese network with the real rain image pairs, which outputs identical backgrounds from the pairs. To train our network, a real rainy dataset is constructed via web-crawling. We show that our unsupervised framework outperforms the recent CNN-based approaches, which are trained by supervised manner. Experimental results demonstrate that the effectiveness of our framework on both synthetic and real-world datasets, showing improved performance over previous approaches.

공구파단 검출을 위한 ART2 신경회로망 (ART1 Neural Network for the Detection of Tool Breakage)

  • 고태조;김희술;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.451-456
    • /
    • 1995
  • This study investigates the feasibility of the real time detection of tool breadage in face milling operation. The proposed methodology using an ART2 neural network overcomes a cumbersome task in terms of the learning or determining a threshold value. The features taken in the researchare the AR parameters modelled from a RLS, and those are proven to be good features for tool breakage from experiments. From the results of the off line application, we can conclude that an ART2 neural network can be well applied to the clustering of tool states in real time regardless of the unsupervised learning.

  • PDF

Unsupervised learning with hierarchical feature selection for DDoS mitigation within the ISP domain

  • Ko, Ili;Chambers, Desmond;Barrett, Enda
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.574-584
    • /
    • 2019
  • A new Mirai variant found recently was equipped with a dynamic update ability, which increases the level of difficulty for DDoS mitigation. Continuous development of 5G technology and an increasing number of Internet of Things (IoT) devices connected to the network pose serious threats to cyber security. Therefore, researchers have tried to develop better DDoS mitigation systems. However, the majority of the existing models provide centralized solutions either by deploying the system with additional servers at the host site, on the cloud, or at third party locations, which may cause latency. Since Internet service providers (ISP) are links between the internet and users, deploying the defense system within the ISP domain is the panacea for delivering an efficient solution. To cope with the dynamic nature of the new DDoS attacks, we utilized an unsupervised artificial neural network to develop a hierarchical two-layered self-organizing map equipped with a twofold feature selection for DDoS mitigation within the ISP domain.

신경망에 의한 테두리를 보존하는 영상압축 (Edge Preserving Image Compression with Weighted Centroid Neural Network)

  • 박동철;우영준
    • 한국통신학회논문지
    • /
    • 제24권10B호
    • /
    • pp.1946-1952
    • /
    • 1999
  • 무지도 경쟁학습을 이용하여 압축된 영상의 복원 후에 나타나는 테두리부분의 손상을 최소화하기 위한 영상압축 방법이 제안되었다. 제안된 영상압축방법은 영상데이터에서 테두리부분에 해당하는 데이터의 기하학적인 특징을 이용하는데, 영상데이터의 통계학적인 특성을 함께 이용하여 기존의 Centroid Neural Network을 일반화시키는 무지도 경쟁학습에 의하여 자동적으로 더욱 많은 code vector를 테두리부분에 배정함으로서 압축된 영상의 복원 후에 나타나는 테두리부분의 손상을 초소화하게 한다. 실험 결과, 기존의 SOM, M-SOM, M/R-CNN등과 비교하여 제안된 방법에 의해 압축된 영상의 복원된 테두리 부분에서 PSNR이 약 2dbv정도 향상된 결과를 보여줄 수 있었다.

  • PDF

자율 학습 신경회로망을 이용한 고장상 선은 알고리즘 (The Discrimination of Fault Type by Unsupervised Neural Network)

  • 이재욱;최창열;장병태;이명회;노장현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.384-387
    • /
    • 2004
  • The direction and the type of a fault on a transmission line need to be identified rapidly and correctly, The work described in this paper addresses the problem encountered by a conventional algorithm in a fault type classification in double circuit line, this arises due to a mutual coupling and CT saturation under the fault condition. We present an approach to identify fault type with novel neural network on double circuit transmission line. The neural network based on combined unsupervised training method provides the ability classify the fault type by different patterns of the associated voltages and currents.

  • PDF

시공간패턴인식 신경회로망의 설계 (Neural Network Design for Spatio-temporal Pattern Recognition)

  • 임정수;이종호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1464-1471
    • /
    • 1999
  • This paper introduces complex-valued competitive learning neural network for spatio-temporal pattern recognition. There have been quite a few neural networks for spatio-temporal pattern recognition. Among them, recurrent neural network, TDNN, and avalanche model are acknowledged as standard neural network paradigms for spatio-temporal pattern recognition. Recurrent neural network has complicated learning rules and does not guarantee convergence to global minima. TDNN requires too many neurons, and can not be regarded to deal with spatio-temporal pattern basically. Grossberg's avalanche model is not able to distinguish long patterns, and has to be indicated which layer is to be used in learning. In order to remedy drawbacks of the above networks, unsupervised competitive learning using complex umber is proposed. Suggested neural network also features simultaneous recognition, time-shift invariant recognition, stable categorizing, and learning rate modulation. The network is evaluated by computer simulation with randomly generated patterns.

  • PDF