• Title/Summary/Keyword: Unstructured text data

Search Result 228, Processing Time 0.024 seconds

A Study on Health Care Service Design for the Improvement of Cognitive Abilities of the Senior Citizens: Focusing on Unstructured Data Analysis (노인 인지능력 개선을 위한 헬스케어 서비스디자인 연구: 비정형 데이터 분석을 중심으로)

  • Seongho Kim;Hyeob Kim
    • Knowledge Management Research
    • /
    • v.23 no.4
    • /
    • pp.69-89
    • /
    • 2022
  • As we enter a super-aged society, senior citizens' health issues are affecting a variety of fields, including medicine, economics, society, and culture. In this study, we intend to draw implications from unstructured data analysis such as text mining and social network analysis in order to apply digital health care service design for improving the cognitive ability of senior citizens. The research procedure of this study improved the service design methodology into a process suited to the analysis of unstructured data, and six steps were applied. Related keywords that exist on social media, focusing on cognitive improvement and healthcare for senior citizens, were collected and analyzed, and based on these results, the direction of healthcare service design for improving on the cognitive abilities of senior citizens was derived. The results of this study are expected to have academic and practical implications for expanding the scope of the use of big data analysis methods and improving existing healthcare service development methodologies.

Cost Performance Evaluation Framework through Analysis of Unstructured Construction Supervision Documents using Binomial Logistic Regression (비정형 공사감리문서 정보와 이항 로지스틱 회귀분석을 이용한 건축 현장 비용성과 평가 프레임워크 개발)

  • Kim, Chang-Won;Song, Taegeun;Lee, Kiseok;Yoo, Wi Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.121-131
    • /
    • 2024
  • This research explores the potential of leveraging unstructured data from construction supervision documents, which contain detailed inspection insights from independent third-party monitors of building construction processes. With the evolution of analytical methodologies, such unstructured data has been recognized as a valuable source of information, offering diverse insights. The study introduces a framework designed to assess cost performance by applying advanced analytical methods to the unstructured data found in final construction supervision reports. Specifically, key phrases were identified using text mining and social network analysis techniques, and these phrases were then analyzed through binomial logistic regression to assess cost performance. The study found that predictions of cost performance based on unstructured data from supervision documents achieved an accuracy rate of approximately 73%. The findings of this research are anticipated to serve as a foundational resource for analyzing various forms of unstructured data generated within the construction sector in future projects.

Analysis of Unstructured Data on Detecting of New Drug Indication of Atorvastatin (아토바스타틴의 새로운 약물 적응증 탐색을 위한 비정형 데이터 분석)

  • Jeong, Hwee-Soo;Kang, Gil-Won;Choi, Woong;Park, Jong-Hyock;Shin, Kwang-Soo;Suh, Young-Sung
    • Journal of health informatics and statistics
    • /
    • v.43 no.4
    • /
    • pp.329-335
    • /
    • 2018
  • Objectives: In recent years, there has been an increased need for a way to extract desired information from multiple medical literatures at once. This study was conducted to confirm the usefulness of unstructured data analysis using previously published medical literatures to search for new indications. Methods: The new indications were searched through text mining, network analysis, and topic modeling analysis using 5,057 articles of atorvastatin, a treatment for hyperlipidemia, from 1990 to 2017. Results: The extracted keywords was 273. In the frequency of text mining and network analysis, the existing indications of atorvastatin were extracted in top level. The novel indications by Term Frequency-Inverse Document Frequency (TF-IDF) were atrial fibrillation, heart failure, breast cancer, rheumatoid arthritis, combined hyperlipidemia, arrhythmias, multiple sclerosis, non-alcoholic fatty liver disease, contrast-induced acute kidney injury and prostate cancer. Conclusions: Unstructured data analysis for discovering new indications from massive medical literature is expected to be used in drug repositioning industries.

Reorganizing Social Issues from R&D Perspective Using Social Network Analysis

  • Shun Wong, William Xiu;Kim, Namgyu
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.3
    • /
    • pp.83-103
    • /
    • 2015
  • The rapid development of internet technologies and social media over the last few years has generated a huge amount of unstructured text data, which contains a great deal of valuable information and issues. Therefore, text mining-extracting meaningful information from unstructured text data-has gained attention from many researchers in various fields. Topic analysis is a text mining application that is used to determine the main issues in a large volume of text documents. However, it is difficult to identify related issues or meaningful insights as the number of issues derived through topic analysis is too large. Furthermore, traditional issue-clustering methods can only be performed based on the co-occurrence frequency of issue keywords in many documents. Therefore, an association between issues that have a low co-occurrence frequency cannot be recognized using traditional issue-clustering methods, even if those issues are strongly related in other perspectives. Therefore, in this research, a methodology to reorganize social issues from a research and development (R&D) perspective using social network analysis is proposed. Using an R&D perspective lexicon, issues that consistently share the same R&D keywords can be further identified through social network analysis. In this study, the R&D keywords that are associated with a particular issue imply the key technology elements that are needed to solve a particular issue. Issue clustering can then be performed based on the analysis results. Furthermore, the relationship between issues that share the same R&D keywords can be reorganized more systematically, by grouping them into clusters according to the R&D perspective lexicon. We expect that our methodology will contribute to establishing efficient R&D investment policies at the national level by enhancing the reusability of R&D knowledge, based on issue clustering using the R&D perspective lexicon. In addition, business companies could also utilize the results by aligning the R&D with their business strategy plans, to help companies develop innovative products and new technologies that sustain innovative business models.

Classification of Unstructured Customer Complaint Text Data for Potential Vehicle Defect Detection (잠재적 차량 결함 탐지를 위한 비정형 고객불만 텍스트 데이터 분류)

  • Ju Hyun Jo;Chang Su Ok;Jae Il Park
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.72-81
    • /
    • 2023
  • This research proposes a novel approach to tackle the challenge of categorizing unstructured customer complaints in the automotive industry. The goal is to identify potential vehicle defects based on the findings of our algorithm, which can assist automakers in mitigating significant losses and reputational damage caused by mass claims. To achieve this goal, our model uses the Word2Vec method to analyze large volumes of unstructured customer complaint data from the National Highway Traffic Safety Administration (NHTSA). By developing a score dictionary for eight pre-selected criteria, our algorithm can efficiently categorize complaints and detect potential vehicle defects. By calculating the score of each complaint, our algorithm can identify patterns and correlations that can indicate potential defects in the vehicle. One of the key benefits of this approach is its ability to handle a large volume of unstructured data, which can be challenging for traditional methods. By using machine learning techniques, we can extract meaningful insights from customer complaints, which can help automakers prioritize and address potential defects before they become widespread issues. In conclusion, this research provides a promising approach to categorize unstructured customer complaints in the automotive industry and identify potential vehicle defects. By leveraging the power of machine learning, we can help automakers improve the quality of their products and enhance customer satisfaction. Further studies can build upon this approach to explore other potential applications and expand its scope to other industries.

Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification (공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘)

  • Hong, Sung-Sam;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.

Comparison of Neural Network Techniques for Text Data Analysis

  • Kim, Munhee;Kang, Kee-Hoon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.231-238
    • /
    • 2020
  • Generally, sequential data refers to data having continuity. Text data, which is a representative type of unstructured data, is also sequential data in that it is necessary to know the meaning of the preceding word in order to know the meaning of the following word or context. So far, many techniques for analyzing sequential data such as text data have been proposed. In this paper, four methods of 1d-CNN, LSTM, BiLSTM, and C-LSTM are introduced, focusing on neural network techniques. In addition, by using this, IMDb movie review data was classified into two classes to compare the performance of the techniques in terms of accuracy and analysis time.

An Analysis for the Student's Needs of non-face-to-face based Software Lecture in General Education using Text Mining (텍스트 마이닝을 이용한 비대면 소프트웨어 교양과목의 요구사항 분석)

  • Jeong, Hwa-Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.105-111
    • /
    • 2022
  • Multiple-choice survey types have been mainly performed to analyze students' needs for online classes. However, in order to analyze the exact needs of students, unstructured data analysis by answer for essay question is required. Big data is applied in various fields because it is possible to analyze unstructured data. This study aims to investigate and analyze what students want subjects or topics for software lecture in general education that process on non-face-to-face online teaching methods. As for the experimental method, keyword analysis and association analysis of big data were performed with unstructured data by giving a subjective questionnaire to students. By the result, we are able to know the keyword what the students want for software lecture, so it will be an important data for planning and designing software lecture of liberal arts in the future as students can grasp the topics they want to learn.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

A Study on the Trends of Construction Safety Accident in Unstructured Text Using Topic Modeling (비정형 텍스트 기반의 토픽 모델링을 이용한 건설 안전사고 동향 분석)

  • Lee, Sang-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.176-182
    • /
    • 2018
  • In order to understand and track the trends of construction safety accident, this study shows the topic trends in the construction safety accident with LDA(Latent Dirichlet Allocation)-based topic modeling method for data analytics. Especially, it performs to figure out the main issue of construction safety accident with unstructured data analysis based on the topic modeling rather than a variety of structured data analysis for preventing to safety accident in construction industry. To apply this methodology, I randomly collected to 540 news article data about construction accident from January 2017 to February 2018. Based on the unstructured data with the LDA-based topic modeling, I found the 10 topics and identified key issues through 10 keyword in each 10 topics. I forecasted the topic issue related to construction safety accident based on analysis of time-series trends about the news data from January 2017 to February 2018. With this method, this research gives a hint about ways of using unstructured news article data to anticipate safety policy and research field and to respond to construction accident safety issues in the future.