People write reviews of numerous products or services on the Internet, in their blogs or community bulletin boards. These unstructured data contain important emotions and opinions about the author's product or service, which can provide important information for future product design or marketing. However, this text-based information cannot be evaluated quantitatively, and thus they are difficult to apply to mathematical models or optimization problems for product design and improvement. Therefore, this study proposes a method to quantitatively extract user's opinion or preference about a specific product or service by utilizing a lot of text-based information existing on the Internet or online. The extracted unstructured text information is decomposed into basic unit words, and positive rate is evaluated by using existing emotional dictionaries and additional lists proposed in this study. This can be a way to effectively utilize unstructured text data, which is being generated and stored in vast quantities, in product or service design. Finally, to verify the effectiveness of the proposed method, a case study was conducted using movie review data retrieved from a portal website. By comparing the positive rates calculated by the proposed framework with user ratings for movies, a guideline on text mining based evaluation of unstructured data is provided.
With the advent of text analytics, VOC (Voice of Customer) data become an important resource which provides the managers and marketing practitioners with consumer's veiled opinion and requirements. In other words, making relevant use of VOC data potentially improves the customer responsiveness and satisfaction, each of which eventually improves business performance. However, unstructured data set such as customers' complaints in VOC data have seldom used in marketing practices such as predicting service time as an index of service quality. Because the VOC data which contains unstructured data is too complicated form. Also that needs convert unstructured data from structure data which difficult process. Hence, this study aims to propose a prediction model to improve the estimation accuracy of the level of customer satisfaction by combining unstructured from textmining with structured data features in VOC. Also the relationship between the unstructured, structured data and service processing time through the regression analysis. Text mining techniques, sentiment analysis, keyword extraction, classification algorithms, decision tree and multiple regression are considered and compared. For the experiment, we used actual VOC data in a company.
건설 프로젝트에서 생산되는 대부분의 데이터는 텍스트 기반의 비정형 데이터이다. 계약서, 시방서, RFi 등 수많은 텍스트 문서들을 효과적으로 분석하기 위해서는 텍스트 마이닝과 같은 비정형 텍스트 데이터 분석 방법이 필요하다. 이에 본 연구에서는 과거에 수행되었던 해외건설공사 프로젝트의 입찰 관련 문서들을 대상으로 텍스트 마이닝을 실시하였으며, 그 결과 빈출단어의 유형, 단어들 간의 연관관계, 문서들의 토픽 유형들에 대한 파악이 가능하였다. 본 연구는 텍스트 마이닝을 활용한 해외건설공사 입찰 정보 분석을 통해 비정형 텍스트 데이터를 효과적으로 분석할 수 있는 방안을 제시하였다는 점에서 의의가 있으며, 향후 관련 분야 연구를 확장시킬 수 있는 기반을 마련할 수 있을 것이라 기대한다.
웹의 발달로 텍스트 등으로 이루어진 비정형 데이터의 활용에 대한 관심이 높아지고 있다. 웹상에서 사용자들이 작성한 대부분의 비정형 데이터는 사용자의 주관이 담겨져 있어 이를 적절히 분석할 경우 사용자의 취향이나 주관적인 관점 등의 아주 유용한 정보를 얻을 수 있다. 이 논문에서는 이러한 비정형 텍스트 문서를 다양한 차원으로 분석하기 하는데 OLAP(온라인 분석 처리)의 다차원 데이터 큐브 기술을 활용한다. 다차원 데이터 큐브는 간단한 문자나 숫자 형태의 정형적인 데이터에 대해 다차원 분석하는데 널리 사용되었지만, 텍스트 문장으로 이루어진 비정형 데이터에 대해서는 활용되지 않았다. 이러한 텍스트 데이터베이스에 포함된 정보를 다차원으로 분석하기 위한 방법으로 텍스트 큐브 모델이 최근에 제안되었는데, 이 텍스트 큐브는 정보 검색에서 널리 사용하는 용어 빈도수(Term Frequency)와 역 인덱스(Inverted Index)를 측정값으로 이용하여 텍스트 데이터베이스에 대한 다차원 분석을 지원한다. 이 논문에서는 이러한 다차원 텍스트 큐브를 활용하여 실제 서비스되고 있는 호텔 정보 공유 사이트의 리뷰 데이터 분석에 활용하였다. 이를 위해 호텔 리뷰 데이터에 대한 다차원 텍스트 큐브를 생성하였으며, 이를 이용하여 다차원 키워드 검색 기능을 제공하여 사용자 중심의 의미있는 정보 검색이 가능한 시스템을 설계 및 구현하였다. 또한, 본 논문에서 제안하는 시스템에 대해 다양한 실험을 수행하였으며 이를 통해 제안된 시스템의 실효성을 검증하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권12호
/
pp.4706-4724
/
2020
With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.
비식별화는 데이터셋으로부터 개인정보를 제거함으로써 개인을 식별할 수 없도록 하는 방법으로, 정보를 수집, 가공, 저장, 배포하는 과정에서 발생할 수 있는 개인정보 노출 위험도를 낮추기 위해 사용한다. 그간 비식별화와 관련된 알고리즘, 모델 등의 관점에서 많은 연구가 이루어졌지만, 대부분은 정형 데이터를 대상으로 하는 제한적인 연구로, 비정형 데이터에 대한 고려는 상대적으로 많지 않은 실정이다. 특히 비정형 텍스트가 빈번히 사용되는 의료 분야의 경우에서는 개인 식별 정보들을 단순 제거함으로써 개인정보 노출 위험도는 낮추지만, 그에 따른 데이터 활용성이 떨어지는 점을 감수하는 실정이다. 본 연구는 개인정보 보호 이슈가 가장 중요하고 따라서 비식별화가 활발하게 연구되고 있는 의료분야 데이터 중 비정형 텍스트를 대상으로 k-익명성 보호모델을 적용한 비식별화 수행 방안을 제시하고, 비식별화 결과에 대한 새로운 유용도 측정 기법을 제안하여 이를 통해 직관적으로 데이터 활용성을 판단할 수 있도록 하는 것을 목표로 한다. 따라서 본 연구의 결과물이 의료 분야뿐만 아니라 비정형 텍스트가 활용되는 모든 산업 분야에서 활용될 경우, 개인 식별 정보가 포함된 비정형 텍스트의 활용도를 향상시킬 수 있을 것으로 기대한다.
빅데이터 분석에서 텍스트 데이터는 대부분 비정형이고 대용량으로 분석 기법이 정립되지 않아 분석에 어려움이 많았다. 따라서 텍스트 데이터 분석 기법의 하나인 빅데이터 워드클라우드 기법의 실무 적용시 문제점과 유용성 검증을 통한 상용화 가능성을 위해 본 연구를 수행하였다. 본 논문에서는 R 프로그램 워드클라우드 기법을 이용하여 "대통령 UN연설문"을 시각화 분석을 하고 이 기법의 한계와 문제점을 도출한다. 그리고 이를 해결하기 위한 개선된 모델을 제안하여 워드클라우드 기법의 실무 적용에 대한 효율적인 방안을 제시한다.
미리 선언된 구조를 이용하여 수집 저장된 정형적 데이터와는 달리 웹 2.0의 시대에서 일반 사용자들이 평상시에 사용하는 자연어 형태로 작성된 비정형 데이터 분석은 과거보다 훨씬 더 넓은 응용범위를 가지고 있다. 데이터 양이 폭발적으로 증가하고 있다는 특성뿐 만 아니라 인간의 감성이 그대로 표현된 특성을 가진 텍스트에서 의미 있는 정보를 추출하는 빅데이터 분석 기법을 텍스트마이닝(Text Mining)이라 하며 본 연구는 이를 주제로 하고 있다. 본 연구를 위해 오픈 소스인 통계분석용 소프트웨어 R 프로그램을 이용하였으며, 비정형 텍스트 문서를 웹 환경에서 수집, 저장, 전처리, 분석 작업과 시각화(Frequency Analysis, Cluster Analysis, Word Cloud, Social Network Analysis)작업 등의 과정에 관한 알고리즘 구현을 연구하였다. 특히, 연구자의 연구 영역 분석에 초점을 더욱 높이기 위해 Data Dictionary를 참조한 키워드 추출 기법을 사용하였다. 실제 사례에 적용한 R은 다양한 OS 구동, 일반적 언어와의 인터페이스 지원 등 통계 분석용 소프트웨어로써 매우 유용하다는 점을 발견할 수 있었다.
개방, 공유, 참여를 특징으로 하는 웹 2.0 시대로 들어서면서 인터넷 사용자들의 데이터 생산 및 공유가 쉬워졌다. 이에 따른 데이터의 기하급수적인 증가와 함께 디지털 정보의 대부분인 비정형적 데이터(Unstructured Data)의 양도 증가하고 있다. 인터넷에서 정해진 형식 없이 자연어 형태로 만들어진 비정형 데이터 중, 특정 상품들에 대해 개인이 평가한 리뷰들은 해당 기업이나 해당 상품에 관심이 있는 잠재적 고객에게 필요한 데이터이다. 많은 양의 리뷰 데이터에서 상품에 대한 유용한 정보를 얻기 위해서는 데이터 수집, 저장, 전처리, 분석, 및 결론 도출의 과정이 필요하다. 따라서 본 연구는 R을 이용한 텍스트 마이닝(Text Mining) 기법을 사용하여 텍스트 형식의 비정형 데이터에서 자연어 처리 기술 및 문서 처리 기술을 적용하여 정형화된 데이터 값을 도출하는 방법에 대해 소개한다. 또한, 도출된 정형화된 리뷰 정보를 데이터 마이닝 기법에 적용하여 목적에 맞게 맞춤화된 리뷰 정보를 도출시키는 방안을 제시하고자 한다.
디지털 데이터에는 TEXT 파일, OFFICE 파일, 이미지 파일, 동영상 파일, 도면 파일 등과 같은 비정형 데이터가 대부분을 차지하고 있다. 최근 기업 내에서 생성되고 활용되는 디지털 데이터는 그 양이 급격히 증가하고 있다. 한편, 이들 디지털 데이터는 디지털 자산으로서의 중요성이 부각되고 있으나, 그 자산의 가치에 대한 평가는 제대로 이루어지지 않고 있는 실정이다. 따라서, 본 연구에서는 기업 내 디지털 자산으로서의 비정형 데이터의 가치 평가 모델을 제시한다. 또한, 이를 통해 자산으로서의 비정형 데이터에 대한 차별적 관리 방안을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.