• 제목/요약/키워드: Unstructured text data

검색결과 228건 처리시간 0.026초

사용자 의견 추출을 위한 텍스트 마이닝 기반 비정형 데이터 정량화 방안 (Unstructured Data Quantification Scheme Based on Text Mining for User Feedback Extraction)

  • 조중흠;정용택;최성욱;옥창수
    • 산업경영시스템학회지
    • /
    • 제41권4호
    • /
    • pp.131-137
    • /
    • 2018
  • People write reviews of numerous products or services on the Internet, in their blogs or community bulletin boards. These unstructured data contain important emotions and opinions about the author's product or service, which can provide important information for future product design or marketing. However, this text-based information cannot be evaluated quantitatively, and thus they are difficult to apply to mathematical models or optimization problems for product design and improvement. Therefore, this study proposes a method to quantitatively extract user's opinion or preference about a specific product or service by utilizing a lot of text-based information existing on the Internet or online. The extracted unstructured text information is decomposed into basic unit words, and positive rate is evaluated by using existing emotional dictionaries and additional lists proposed in this study. This can be a way to effectively utilize unstructured text data, which is being generated and stored in vast quantities, in product or service design. Finally, to verify the effectiveness of the proposed method, a case study was conducted using movie review data retrieved from a portal website. By comparing the positive rates calculated by the proposed framework with user ratings for movies, a guideline on text mining based evaluation of unstructured data is provided.

고객의 소리(VOC) 데이터를 활용한 서비스 처리 시간 예측방법 (A Method of Predicting Service Time Based on Voice of Customer Data)

  • 김정훈;권오병
    • 한국IT서비스학회지
    • /
    • 제15권1호
    • /
    • pp.197-210
    • /
    • 2016
  • With the advent of text analytics, VOC (Voice of Customer) data become an important resource which provides the managers and marketing practitioners with consumer's veiled opinion and requirements. In other words, making relevant use of VOC data potentially improves the customer responsiveness and satisfaction, each of which eventually improves business performance. However, unstructured data set such as customers' complaints in VOC data have seldom used in marketing practices such as predicting service time as an index of service quality. Because the VOC data which contains unstructured data is too complicated form. Also that needs convert unstructured data from structure data which difficult process. Hence, this study aims to propose a prediction model to improve the estimation accuracy of the level of customer satisfaction by combining unstructured from textmining with structured data features in VOC. Also the relationship between the unstructured, structured data and service processing time through the regression analysis. Text mining techniques, sentiment analysis, keyword extraction, classification algorithms, decision tree and multiple regression are considered and compared. For the experiment, we used actual VOC data in a company.

텍스트 마이닝을 통한 해외건설공사 입찰정보 분석 - 해외건설공사의 입찰자 질의(Bidder Inquiry) 정보를 대상으로 - (Construction Bid Data Analysis for Overseas Projects Based on Text Mining - Focusing on Overseas Construction Project's Bidder Inquiry)

  • 이지희;이준성;손정욱
    • 한국건설관리학회논문집
    • /
    • 제17권5호
    • /
    • pp.89-96
    • /
    • 2016
  • 건설 프로젝트에서 생산되는 대부분의 데이터는 텍스트 기반의 비정형 데이터이다. 계약서, 시방서, RFi 등 수많은 텍스트 문서들을 효과적으로 분석하기 위해서는 텍스트 마이닝과 같은 비정형 텍스트 데이터 분석 방법이 필요하다. 이에 본 연구에서는 과거에 수행되었던 해외건설공사 프로젝트의 입찰 관련 문서들을 대상으로 텍스트 마이닝을 실시하였으며, 그 결과 빈출단어의 유형, 단어들 간의 연관관계, 문서들의 토픽 유형들에 대한 파악이 가능하였다. 본 연구는 텍스트 마이닝을 활용한 해외건설공사 입찰 정보 분석을 통해 비정형 텍스트 데이터를 효과적으로 분석할 수 있는 방안을 제시하였다는 점에서 의의가 있으며, 향후 관련 분야 연구를 확장시킬 수 있는 기반을 마련할 수 있을 것이라 기대한다.

다차원 텍스트 큐브를 이용한 호텔 리뷰 데이터의 다차원 키워드 검색 및 분석 (Multi-Dimensional Keyword Search and Analysis of Hotel Review Data Using Multi-Dimensional Text Cubes)

  • 김남수;이수안;조선화;김진호
    • 정보화연구
    • /
    • 제11권1호
    • /
    • pp.63-73
    • /
    • 2014
  • 웹의 발달로 텍스트 등으로 이루어진 비정형 데이터의 활용에 대한 관심이 높아지고 있다. 웹상에서 사용자들이 작성한 대부분의 비정형 데이터는 사용자의 주관이 담겨져 있어 이를 적절히 분석할 경우 사용자의 취향이나 주관적인 관점 등의 아주 유용한 정보를 얻을 수 있다. 이 논문에서는 이러한 비정형 텍스트 문서를 다양한 차원으로 분석하기 하는데 OLAP(온라인 분석 처리)의 다차원 데이터 큐브 기술을 활용한다. 다차원 데이터 큐브는 간단한 문자나 숫자 형태의 정형적인 데이터에 대해 다차원 분석하는데 널리 사용되었지만, 텍스트 문장으로 이루어진 비정형 데이터에 대해서는 활용되지 않았다. 이러한 텍스트 데이터베이스에 포함된 정보를 다차원으로 분석하기 위한 방법으로 텍스트 큐브 모델이 최근에 제안되었는데, 이 텍스트 큐브는 정보 검색에서 널리 사용하는 용어 빈도수(Term Frequency)와 역 인덱스(Inverted Index)를 측정값으로 이용하여 텍스트 데이터베이스에 대한 다차원 분석을 지원한다. 이 논문에서는 이러한 다차원 텍스트 큐브를 활용하여 실제 서비스되고 있는 호텔 정보 공유 사이트의 리뷰 데이터 분석에 활용하였다. 이를 위해 호텔 리뷰 데이터에 대한 다차원 텍스트 큐브를 생성하였으며, 이를 이용하여 다차원 키워드 검색 기능을 제공하여 사용자 중심의 의미있는 정보 검색이 가능한 시스템을 설계 및 구현하였다. 또한, 본 논문에서 제안하는 시스템에 대해 다양한 실험을 수행하였으며 이를 통해 제안된 시스템의 실효성을 검증하였다.

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.

의료 비정형 텍스트 비식별화 및 속성기반 유용도 측정 기법 (De-identifying Unstructured Medical Text and Attribute-based Utility Measurement)

  • 노건;전종훈
    • 한국전자거래학회지
    • /
    • 제24권1호
    • /
    • pp.121-137
    • /
    • 2019
  • 비식별화는 데이터셋으로부터 개인정보를 제거함으로써 개인을 식별할 수 없도록 하는 방법으로, 정보를 수집, 가공, 저장, 배포하는 과정에서 발생할 수 있는 개인정보 노출 위험도를 낮추기 위해 사용한다. 그간 비식별화와 관련된 알고리즘, 모델 등의 관점에서 많은 연구가 이루어졌지만, 대부분은 정형 데이터를 대상으로 하는 제한적인 연구로, 비정형 데이터에 대한 고려는 상대적으로 많지 않은 실정이다. 특히 비정형 텍스트가 빈번히 사용되는 의료 분야의 경우에서는 개인 식별 정보들을 단순 제거함으로써 개인정보 노출 위험도는 낮추지만, 그에 따른 데이터 활용성이 떨어지는 점을 감수하는 실정이다. 본 연구는 개인정보 보호 이슈가 가장 중요하고 따라서 비식별화가 활발하게 연구되고 있는 의료분야 데이터 중 비정형 텍스트를 대상으로 k-익명성 보호모델을 적용한 비식별화 수행 방안을 제시하고, 비식별화 결과에 대한 새로운 유용도 측정 기법을 제안하여 이를 통해 직관적으로 데이터 활용성을 판단할 수 있도록 하는 것을 목표로 한다. 따라서 본 연구의 결과물이 의료 분야뿐만 아니라 비정형 텍스트가 활용되는 모든 산업 분야에서 활용될 경우, 개인 식별 정보가 포함된 비정형 텍스트의 활용도를 향상시킬 수 있을 것으로 기대한다.

비정형 텍스트 테이터 분석을 위한 워드클라우드 기법에 관한 연구 (A Study on Word Cloud Techniques for Analysis of Unstructured Text Data)

  • 이원조
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.715-720
    • /
    • 2020
  • 빅데이터 분석에서 텍스트 데이터는 대부분 비정형이고 대용량으로 분석 기법이 정립되지 않아 분석에 어려움이 많았다. 따라서 텍스트 데이터 분석 기법의 하나인 빅데이터 워드클라우드 기법의 실무 적용시 문제점과 유용성 검증을 통한 상용화 가능성을 위해 본 연구를 수행하였다. 본 논문에서는 R 프로그램 워드클라우드 기법을 이용하여 "대통령 UN연설문"을 시각화 분석을 하고 이 기법의 한계와 문제점을 도출한다. 그리고 이를 해결하기 위한 개선된 모델을 제안하여 워드클라우드 기법의 실무 적용에 대한 효율적인 방안을 제시한다.

Data Dictionary 기반의 R Programming을 통한 비정형 Text Mining Algorithm 연구 (A study on unstructured text mining algorithm through R programming based on data dictionary)

  • 이종화;이현규
    • 한국산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.113-124
    • /
    • 2015
  • 미리 선언된 구조를 이용하여 수집 저장된 정형적 데이터와는 달리 웹 2.0의 시대에서 일반 사용자들이 평상시에 사용하는 자연어 형태로 작성된 비정형 데이터 분석은 과거보다 훨씬 더 넓은 응용범위를 가지고 있다. 데이터 양이 폭발적으로 증가하고 있다는 특성뿐 만 아니라 인간의 감성이 그대로 표현된 특성을 가진 텍스트에서 의미 있는 정보를 추출하는 빅데이터 분석 기법을 텍스트마이닝(Text Mining)이라 하며 본 연구는 이를 주제로 하고 있다. 본 연구를 위해 오픈 소스인 통계분석용 소프트웨어 R 프로그램을 이용하였으며, 비정형 텍스트 문서를 웹 환경에서 수집, 저장, 전처리, 분석 작업과 시각화(Frequency Analysis, Cluster Analysis, Word Cloud, Social Network Analysis)작업 등의 과정에 관한 알고리즘 구현을 연구하였다. 특히, 연구자의 연구 영역 분석에 초점을 더욱 높이기 위해 Data Dictionary를 참조한 키워드 추출 기법을 사용하였다. 실제 사례에 적용한 R은 다양한 OS 구동, 일반적 언어와의 인터페이스 지원 등 통계 분석용 소프트웨어로써 매우 유용하다는 점을 발견할 수 있었다.

텍스트 마이닝 기반의 온라인 상품 리뷰 추출을 통한 목적별 맞춤화 정보 도출 방법론 연구 (A Study on the Method for Extracting the Purpose-Specific Customized Information from Online Product Reviews based on Text Mining)

  • 김주영;김동수
    • 한국전자거래학회지
    • /
    • 제21권2호
    • /
    • pp.151-161
    • /
    • 2016
  • 개방, 공유, 참여를 특징으로 하는 웹 2.0 시대로 들어서면서 인터넷 사용자들의 데이터 생산 및 공유가 쉬워졌다. 이에 따른 데이터의 기하급수적인 증가와 함께 디지털 정보의 대부분인 비정형적 데이터(Unstructured Data)의 양도 증가하고 있다. 인터넷에서 정해진 형식 없이 자연어 형태로 만들어진 비정형 데이터 중, 특정 상품들에 대해 개인이 평가한 리뷰들은 해당 기업이나 해당 상품에 관심이 있는 잠재적 고객에게 필요한 데이터이다. 많은 양의 리뷰 데이터에서 상품에 대한 유용한 정보를 얻기 위해서는 데이터 수집, 저장, 전처리, 분석, 및 결론 도출의 과정이 필요하다. 따라서 본 연구는 R을 이용한 텍스트 마이닝(Text Mining) 기법을 사용하여 텍스트 형식의 비정형 데이터에서 자연어 처리 기술 및 문서 처리 기술을 적용하여 정형화된 데이터 값을 도출하는 방법에 대해 소개한다. 또한, 도출된 정형화된 리뷰 정보를 데이터 마이닝 기법에 적용하여 목적에 맞게 맞춤화된 리뷰 정보를 도출시키는 방안을 제시하고자 한다.

기업내 비정형 데이터의 가치 평가 모델에 관한 연구 (A Study on the Value Evaluation of the Unstructured Data within Enterprise)

  • 장만철;김정수;김종희;김종배
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.367-369
    • /
    • 2014
  • 디지털 데이터에는 TEXT 파일, OFFICE 파일, 이미지 파일, 동영상 파일, 도면 파일 등과 같은 비정형 데이터가 대부분을 차지하고 있다. 최근 기업 내에서 생성되고 활용되는 디지털 데이터는 그 양이 급격히 증가하고 있다. 한편, 이들 디지털 데이터는 디지털 자산으로서의 중요성이 부각되고 있으나, 그 자산의 가치에 대한 평가는 제대로 이루어지지 않고 있는 실정이다. 따라서, 본 연구에서는 기업 내 디지털 자산으로서의 비정형 데이터의 가치 평가 모델을 제시한다. 또한, 이를 통해 자산으로서의 비정형 데이터에 대한 차별적 관리 방안을 제시한다.

  • PDF