• 제목/요약/키워드: Unsteady pressure

검색결과 783건 처리시간 0.025초

침식연소를 고려한 고체로켓의 비정상 내타도 해석 기법 (Unsteady Internal Ballistic Analysis of Solid Rocket Motors with Erosive Burning)

  • 조민경;허준영;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.221-226
    • /
    • 2008
  • 본 연구에서는 연소실내 유동으로 인해 발생하는 연소실 축방향 압력변화를 고려한 비정상 내탄도 해석모델을 개발하고 이를 바탕으로 침식연소를 해석하였다. 개발 모델은 선행 연구와 비교하였으며 해석결과가 일치함을 확인하였다. 연소실 압력, 그레인 길이, 그레인 초기온도, 추진제 기화온도가 침식연소에 미치는 영향을 조사하였다.

  • PDF

침식연소를 고려한 고체로켓의 비정상 내탄도 해석 기법 (Unsteady Internal Ballistic Analysis for Solid Rocket Motors with Erosive Burning)

  • 조민경;허준영;성홍계
    • 한국추진공학회지
    • /
    • 제13권2호
    • /
    • pp.17-25
    • /
    • 2009
  • 본 연구에서는 연소실의 축방향 압력과 속도변화를 고려한 비정상 내탄도 해석모델을 제안하고 이를 바탕으로 침식연소에 미치는 인자를 해석하였다. 개발 모델의 검증을 위하여 침식연소가 없는 경우와 침식연소가 있는 경우에 대하여 선행연구 결과와 비교하였으며 해석결과가 일치함을 확인하였다. 연소실 압력, 그레인 길이, 그레인 초기온도, 추진제 기화온도가 침식연소에 미치는 영향을 조사하였다.

1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석-II : 비정상상태 특성 (Performance Analysis of the Pintle Thruster Using 1-D Simulation-II : Unsteady State Characteristics)

  • 노성현;김지홍;허환일
    • 한국항공우주학회지
    • /
    • 제43권4호
    • /
    • pp.311-317
    • /
    • 2015
  • 본 연구는 공압시험용 핀틀추력기의 비정상상태 특성을 예측하기 위한 1-D 시뮬레이션 적용법을 기술한다. 추력을 제어하기 위해 질량유량, 챔버압력, 노즐출구 압력은 핵심 매개변수이다. 챔버압력은 핀틀 스트로크 변화에 따라 단조롭게 증감하였지만, 추력은 챔버 압력의 변화와 다른 양상을 보였다. 핀틀이 전진할 때 핀틀 속도와 챔버 자유체적이 특정 값을 초과하면 추력 값은 초기에 감소하다가 다시 증가하는 경향을 보였다. 1-D 시뮬레이션은 비정상 상태 특성을 예측하는데 한계가 있지만 실험이나 수치해석 이전에 듀얼벨 노즐과 같은 다양한 고도보정노즐 추력기의 초기 성능 평가에 여전히 유용하다.

CFD에 의한 용적형수차의 압력맥동 및 내부유동 해석 (CFD Analysis of Pressure Pulsation and Internal Flow for a Positive Displacement Hydraulic Turbine)

  • 최영도;김유택;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.687-693
    • /
    • 2007
  • It has been known that one of the main obstacles of improving the performance of positive displacement hydraulic turbine is pressure pulsation which occurs at the regions upstream and downstream of the turbine. In order to suppress the pressure pulsation. occurrence reason of the pressure pulsation should be understood in detail Therefore. this study aims to establish a CFD analysis method by which the phenomena of unsteady pressure pulsation can be examined with high accuracy. Internal flow field of the turbine is modeled simply to generalize the relation between the pressure pulsation and internal flow. The results show that the Present CFD method adopting unsteady calculation can be applied successfully to the analysis of the Phenomena of Pressure Pulsation. Occurrence of the Pressure pulsation is due to the difference of the rotational speed of turbine rotors When driving rotor rotates by uniform speed and fellowing rotor rotates by variable speed, very large Pressure pulsation occurs within the turbine periodically.

과급기용 Radial Turbine의 비정상 유동특성에 관한 연구 (An Investigation of Flow Characteristics of Radial Gas Turbine for Turbocharger under Unsteady Flow)

  • 최재성;고대권
    • 한국자동차공학회논문집
    • /
    • 제2권2호
    • /
    • pp.42-48
    • /
    • 1994
  • Turbocharging is one of the best methods to improve the performance of diesel engines, because of its merits,-power ratio, fuel consumption and exhaust emissions. Most of them in small and medium diesel engines have adopted the pulse turbocharging method with twin entry vaneless radial turbines to maximize the energy utility of exhaust gas. This method requires the high performance of turbine under unsteady flow, and also the matching between turbine and diesel engine is most important. However, it is difficult to match properly between them. Because the steady flow data are usually used for it. Accordingly, it is necessary to catch the characteristics of turbine performance correctly over the wide range of the operation conditions under unsteady flow. In this paper, the characteristics of turbine performance under unsteady flow are represented at varying conditions, such as inlet pressure amplitude, turbine speed and frequence.

  • PDF

난류박리기포에 대한 비정상 후류의 영향 (Influence of unsteady wake on a turbulent separation bubble)

  • 전세종;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.294-299
    • /
    • 2001
  • An experimental study was made of turbulent separated and reattaching flow over a blunt body, where unsteady wake was generated by a spoke wheel-type wake generator with cylindrical rods. The influence of unsteady wake was scrutinized by altering the rotating direction (CW and CCW) and the normalized passing frequency $(0{\leq}St_H{\leq}0.20)$. The Reynolds number based on the cylindrical rod was $Re_d=375$. A phase-averaging technique was employed to characterize the unsteady wake. The effect of different rotating directions was examined in detail, which gave a significant reduction of $X_R$. The wall pressure fluctuations on the blunt body were analyzed in terms of the spectrum and the coherence.

  • PDF

난류박리기포에 대한 비정상 후류의 영향 (Influence of Unsteady Wake on a Turbulent Separation Bubble)

  • 전세종;성형진
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.353-361
    • /
    • 2002
  • An experimental study was made of turbulent separated and reattaching flow over a blunt body, where unsteady wake was generated by a spoke wheel-type wake generator with cylindrical rods. The influence of unsteady wake was scrutinized by altering the rotating direction (CW and CCW) and the normalized passing frequency (0 St$\_$H/ 0.20). The Reynolds number based on the cylindrical rod was Re$\_$d/=375. A phase-averaging technique was employed to characterize the unsteady wake. The effect of different rotating directions was examined in detail, which gave a significant reduction of x$\_$R/. The wall pressure fluctuations on the blunt body were analysed in terms of the spectrum and the coherence.

The Numerical Simulation of Unsteady Flow in a Mixed flow Pump Guide Vane

  • Li, Yi-Bin;Li, Ren-Nian;Wang, Xiu-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권4호
    • /
    • pp.200-205
    • /
    • 2013
  • In order to investigate the characteristics of unsteady flow in a mixed flow pump guide vane under the small flow conditions, several indicator points in a mixed flow pump guide vane was set, the three-dimensional unsteady turbulence numerical value of the mixed flow pump which is in the whole flow field will be calculated by means of the large eddy simulation (LES), sub-grid scale model and sliding mesh technology. The experimental results suggest that the large eddy simulation can estimate the positive slope characteristic of head & capacity curve. And the calculation results show that the pressure fluctuation coefficients of the middle section in guide vane inlet will decrease firstly and then increase. In guide vane outlet, the pressure fluctuation coefficients of section will be approximately axially symmetrical distribution. The pressure fluctuation minimum of section in guide vane inlet is above the middle location of the guide vane suction surface, and the pressure fluctuation minimum of section in which located the middle and outlet of guide vane. When it is under the small flow operating condition, the eddy scale of guide vane is larger, and the pressure fluctuation of the channel in guide vane being cyclical fluctuations obviously which leads to the area of eddy expanding to the whole channel from the suction side. The middle of the guide vane suction surface of the minimum amplitude pressure fluctuation to which the vortex core of eddy scale whose direction of fluid's rotation is the same to impeller in the guide vane adhere.

Characteristics of the Inlet with the Pressure Perturbation in the Ramjet Engine

  • Shin, Dong-Shin;Kang, Ho-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.286-294
    • /
    • 2006
  • Flows in a ramjet inlet is simulated for the study of the rocket-ramjet transition. The flow is unsteady, two-dimensional axisymmetric, compressible and turbulent. Double time marching method is used for the unsteady calculation and HLLC method is used as a higher order MUSCL method. As for turbulent calculation, $\kappa-\omega$ SST model is used for more accurate viscous calculations. Sinusoidal pressure perturbation is given at the exit and the flow fields at the inlet is studied. The cruise condition as well as the ground test condition are considered. The pressure level for the ground test condition is relatively low and the effect of the pressure perturbation at the combustion chamber is small. The normal shock at the cruise condition is very sensitive to the pressure perturbation and can be easily detached from the cowl when the exit pressure is relatively high. The sudden decrease in the mass flux is observed when the inlet flow becomes subcritical, which can make the inlet incapable. The amplitude of travelling pressure waves becomes larger as the downstream pressure increases, and the wavelength becomes shorter as Mach number increases. The phase difference of the travelling perturbed pressure wave in space is 180 degree.

상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석 (Reliability Analysis for Probability of Pipe Breakage in Water Distribution System)

  • 권혁재;이철응
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.