• 제목/요약/키워드: Unsteady Pressure Distribution

검색결과 108건 처리시간 0.023초

Understanding of unsteady pressure fields on prisms based on covariance and spectral proper orthogonal decompositions

  • Hoa, Le Thai;Tamura, Yukio;Matsumoto, Masaru;Shirato, Hiromichi
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.517-540
    • /
    • 2013
  • This paper presents applications of proper orthogonal decomposition in both the time and frequency domains based on both cross spectral matrix and covariance matrix branches to analyze multi-variate unsteady pressure fields on prisms and to study spanwise and chordwise pressure distribution. Furthermore, modification of proper orthogonal decomposition is applied to a rectangular spanwise coherence matrix in order to investigate the spanwise correlation and coherence of the unsteady pressure fields. The unsteady pressure fields have been directly measured in wind tunnel tests on some typical prisms with slenderness ratios B/D=1, B/D=1 with a splitter plate in the wake, and B/D=5. Significance and contribution of the first covariance mode associated with the first principal coordinates as well as those of the first spectral eigenvalue and associated spectral mode are clarified by synthesis of the unsteady pressure fields and identification of intrinsic events inside the unsteady pressure fields. Spanwise coherence of the unsteady pressure fields has been mapped the first time ever for better understanding of their intrinsic characteristics.

진동하는 고 받음각 날개주위의 비정상 아음속 유동해석 (Analysis of Unsteady Subsonic Flow Around a High Angle of Attack of the Oscillating Airfoil)

  • 문지수;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.434-440
    • /
    • 2011
  • Oscillating airfoil haw been challenged for the dynamic stalls of airfoil am wind turbines at high angle of attach. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance am safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed for the oscillating airfoil at high angle of attack around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.2 and Reynolds number of $1.2{\times}10^4$. The lift, drag, pressure distribution, etc. are analyzed according to the pitching oscillation. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

1단 축류터빈 로터의 후류에서 비정상 전압력 측정에 관한 연구 (Measurement of Unsteady Total Pressure downstream of an 1-Stage Axial Turbine)

  • 강정식;차봉준;양수석;이대성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.318-323
    • /
    • 2005
  • To evaluate the accurate performance of turbomachinery, it is important to measure the unsteady flow phenomena downstream of the rotor blade. This paper presents the development of the fast-response total pressure probe for the measurement of the total pressure field at the exit of rotor and the result of measurement in a 1-stage axial turbine. The fast-response total pressure probe was fabricated by installing a fast-response pressure sensor near the head of a Kiel probe. And it measured the phase-lock averaged total pressure downstream of an 1-stage axial turbine. The developed probe successfully measured the accurate total pressure distribution at rotor exit and made possible to evaluate the loss distribution and the accurate performance of turbomachinery.

  • PDF

고 받음각 2차원 NACA0012 에어포일 주위의 비정상 공기역학적 특성 (Unsteady Aerodynamic characteristics at High Angle of Attack around Two Dimensional NACA0012 Airfoil)

  • 유재경;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.414-419
    • /
    • 2011
  • Missile am fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 60 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure distribution, etc. are analyzed according to the angle of attack. The results at a low angle of attack are compared with other results before a stall condition. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution on the airfoil surface, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석 (Reliability Analysis for Probability of Pipe Breakage in Water Distribution System)

  • 권혁재;이철응
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.

유압관로의 동특성을 이용한 비정상 유량계측 (Unsteady Flow Rate Measurement by Using Hydraulic Pipeline Dynamics)

  • 김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.411-416
    • /
    • 1999
  • The measurement of unsteady flow rate is of vital importance to clarify and improve the dynamic characteristics in pipeline, hydraulic components and system. There is also demand for a real time flow sensor of ability to measure unsteady flow rate with high accuracy and fast response to realize feedback control of flow rate in fluid power systems. In this paper, we propose an approach for estimating unsteady flow rate through a pipeline and components under high pressure condition. In the method, unsteady flow rate is estimated by using hydraulic pipeline dynamics and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-checking functions of the method, the validity is investigated by comparison with the measured and estimated pressure waveforms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate waveforms and theroetical those under unsteady laminar flow conditions. the method proposed here is useful in estimating unsteady flow rate through an arbitray cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

  • PDF

원심압축기 채널디퓨저 내부의 비정상 압력분포 (Unsteady Pressure Distributions in a Channel Diffuser of Centrifugal Compressor)

  • 강정식;조성국;강신형
    • 한국유체기계학회 논문집
    • /
    • 제3권2호
    • /
    • pp.57-65
    • /
    • 2000
  • The aim of this paper is to understand the unsteady flow phenomena in a high speed centrifugal compressor channel diffuser. Instantaneous pressures aye measured at six locations in the diffuser using fast-response pressure transducers. Instantaneous pressure ratio decomposition was applied to analyze the pressure signal. In vaneless space where impeller-vaned diffuser interaction is strong, aperiodic unsteadiness is high and periodic pressure waveforms by blade passing are not clear at low flow rates, especially near vane suction side. High aperiodic unsteadiness decreases downstream of diffuser. The blade-to-blade pressure wave does not disappear in surge flow condition. In surge there exist not only large scale periodic surge wave but also blade-to-blade pressure wave.

  • PDF

원심압축기 채널디퓨저 내부의 비정상 압력분포 (Unsteady Pressure Distributions in a Channel Diffuser of Centrifugal Compressor)

  • 강정식;조성국;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.69-77
    • /
    • 1999
  • The aim of this paper is to understand the unsteady flow phenomena in a high speed centrifugal compressor channel diffuser. Instantaneous pressures are measured at six locations in the diffuser using fast-response pressure transducers. Instantaneous pressure ratio decomposition was applied to analyze the pressure signal. In vaneless space where impeller-vaned diffuser interaction is strong, aperiodic unsteadiness is high and periodic pressure waveforms by blade passing are not clear at low flow rates, especially near vane suction side. High aperiodic unsteadiness decreases downstream of diffuser. The blade-to-blade pressure wave does not disappear in surge flow condition. In surge there exist not only large scale periodic surge wave but also blade-to-blade pressure wave.

  • PDF

분포정수계 관로모델을 이용한 비정상 유량계측 (Unsteady Flow Rate Measurement Based on Distributed Parameter Pipeline Model)

  • 김도태;홍성태
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.8-13
    • /
    • 2008
  • The paper proposes a model-based measurement of unsteady flow rate by using distributed parameter pipeline model and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-diagnostics functions of the measurement method, the validity is investigated by comparison with the measured and estimated pressure and flow rate wave forms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate wave forms and theoretical those under unsteady laminar flow conditions. The method proposed here is useful in estimating unsteady flow rate through an arbitrary cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF