• Title/Summary/Keyword: Unmanned order system

Search Result 324, Processing Time 0.026 seconds

A Study on Obstacle Avoidance Technology of Autonomous Treveling Robot Based on Ultrasonic Sensor (초음파센서 기반 자율주행 로봇의 장애물 회피에 관한 연구)

  • Hwang, Won-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2015
  • This paper presents the theoretical development of a complete navigation problem of a nonholonomic mobile robot by using ultrasonic sensors. To solve this problem, a new method to computer a fuzzy perception of the environment is presented, dealing with the uncertainties and imprecision from the sensory system and taking into account nonholonomic constranits of the robot. Fuzzy perception, fuzzy controller are applied, both in the design of each reactive behavior and solving the problem of behavior combination, to implement a fuzzy behavior-based control architecture. The performance of the proposed obstacle avoidance robot controller in order to determine the exact dynamic system modeling system that uncertainty is difficult for nomadic controlled robot direction angle by ultrasonic sensors throughout controlled performance tests. In additionally, this study is an in different ways than the self-driving simulator in the development of ultrasonci sensors and unmanned remote control techniques used by the self-driving robot controlled driving through an unmanned remote controlled unmanned realize the performance of factory antomation.

Deriving Priorities between Autonomous Functions of Unmanned Aircraft using AHP Analysis: Focused on MUM-T for Air to Air Combat (AHP 기법을 이용한 무인기 자율기능 우선순위 도출: 유무인 협업 공대공 교전을 중심으로)

  • Jung, Byungho;Oh, Jihyun;Seol, Hyeonju;Hwang, Seong In
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.1
    • /
    • pp.10-19
    • /
    • 2022
  • Recently, the Defense Advanced Research Projects Agency(DARPA) in the United States is studying a new concept of war called Mosaic Warfare, and MUM-T(Manned-Unmanned Teaming) through the division of missions between expensive manned and inexpensive unmanned aircraft is at the center. This study began with the aim of deriving the priority of autonomous functions according to the role of unmanned aerial vehicles in the present and present collaboration that is emerging along with the concept of mosaic warfare. The autonomous function of unmanned aerial vehicles between the presence and absence collaboration may vary in priority depending on the tactical operation of unmanned aerial vehicles, such as air-to-air, air-to-ground, and surveillance and reconnaissance. In this paper, ACE (Air Combat Evaluation), Skyborg, and Longshot, which are recently studied by DARPA, derive the priority of autonomous functions according to air-to-air collaboration, and use AHP analysis. The results of this study are meaningful in that it is possible to recognize the priorities of autonomous functions necessary for unmanned aircraft in order to develop unmanned aerial vehicles according to the priority of autonomous functions and to construct a roadmap for technology implementation. Furthermore, it is believed that the mass production and utilization of unmanned air vehicles will increase if one unmanned air vehicle platform with only essential functions necessary for air-to-air, air-to-air, and surveillance is developed and autonomous functions are expanded in the form of modules according to the tactical operation concept.

Development of Collision Prevention System for Agricultural Unmanned Helicopter (LiDAR를 이용한 농업용 무인헬기 충돌방지시스템 개발)

  • Jeong, Junho;Gim, Hakseong;Lee, Dongwoo;Suk, Jinyoung;Kim, Seungkeun;Kim, Jingu;Ryu, Si-dae;Kim, Sungnam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.611-619
    • /
    • 2016
  • This paper proposes a collision prevention system for an agricultural unmanned helicopter. The collision prevention system consists of an obstacle detection system, a mapping algorithm, and a collision avoidance algorithm. The obstacle detection system based on a LiDAR sensor is implemented in the unmanned helicopter and acquires distance information of obstacles in real-time. Then, an obstacle mapping is carried out by combining the distance to the obstacles with attitude/location data of the unmanned helicopter. In order to prevent a collision, alert is activated to an operator based on the map when the vehicle approaches to the obstacles. Moreover, the developed collision prevention system is verified through flight test simulating a flight pattern aerial spraying.

A Research on the Classification of Intelligence Level of Unmanned Grain Harvester (무인 곡물 수확기 지능수준 등급구분에 관한 연구)

  • Na, Zhao;Pan, Young-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.165-173
    • /
    • 2020
  • The emergence of unmanned agricultural machinery has brought new research content to the development of precision agriculture. In order to speed up the research on key technologies of unmanned agricultural machinery, classification of intelligence level of unmanned agricultural machinery has become a primary task. In this study, the researchers take the complex interactive system consisting of unmanned grain harvester, task and driving environment as the research object, and carry out a research on the grading and classification of intelligent level of unmanned grain harvester. The researchers of this study also establish an evaluation model of unmanned grain harvester vehicle, which consists of human intervention degree, environmental complexity, and task complexity. Besides, the grading and classification of intelligence level of the unmanned grain harvester is carried out according to the human intervention degree, environmental complexity and the task complexity of the unmanned grain harvester. It provides a direction for the future development of unmanned agricultural machinery.

On the Establishment of LSTM-based Predictive Maintenance Platform to Secure The Operational Reliability of ICT/Cold-Chain Unmanned Storage

  • Sunwoo Hwang;Youngmin Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.221-232
    • /
    • 2023
  • Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational reliability of the ICT/Cold-Chain Unmanned Storage, a predictive maintenance system was implemented based on the LSTM model. In this paper, a server for data management, such as collection and monitoring, and an analysis server that notifies the monitoring server through data-based failure and defect analysis are separately distinguished. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on RabbitMQ, loading data in an InMemory method using Redis, and managing snapshot data DB in real time. The predictive maintenance platform can contribute to securing reliability by identifying potential failures and defects that may occur in the operation of the ICT/Cold-Chain Unmanned Storage in the future.

Unmanned WIG (U-WIG) Craft Design and Performance Test (무인 위그선 설계 및 성능시험)

  • Ahn, Byoung-Kwon;Jang, Jung;Song, Kwan-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.396-402
    • /
    • 2008
  • As demands for high speed sea transportations have recently been increased, various high speed ships appear. Among them the WIG is believed to be one of the next generation of the sea transportation system. Test flight of the 20 seaters WIG craft, Haenarae-X1, developed by MOERI was a success in August, 2007. Development of the large WIG is now ongoing, and it is expected to be commercialized in the near future. In this study we designed a remote controled WIG Craft and carried out its performance test in order to establish engineering design procedures of an Unmanned WIG (U-WIG) craft.

Automated Maintenance Unmanned Monitoring System Using Intelligent Power Control System (지능형 전원제어장치를 이용한 자동화 유지보수 무인감시시스템)

  • Cha, Min-Uk;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.237-239
    • /
    • 2021
  • Failure and malfunction of the unmanned surveillance facility cost can lead to delays occurring until the person in charge arrives at the unmanned surveillance facility, and theft, damage, and information leakage damage caused by intruders. In addition, due to equipment failure and malfunction, additional costs are incurred due to constant inspection by the manager. In this paper, in order to compensate for the malfunction of unmanned facility costs, we propose a system that diagnoses the monitoring facility in real time, displays the contents of the problem, automatically restores the facility power, and informs the person in charge of the situation by text message. The proposed system is a surveillance facility consisting of main facilities such as video equipment (CCTV), sound equipment, floodlights, etc. And SMS server that can send text messages in real time. Through experiments, the effectiveness of the proposed system was verified.

  • PDF

Improvement and Implementation of Unmanned Traffic Enforcement Equipment (무인교통단속장비 개선 및 구현)

  • Lee, Sang-O;Lee, Choul-Ki;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.42-56
    • /
    • 2022
  • The thesis is automated traffic control equipment system aims to improve. Areas where improvement is needed about the existing automated traffic control equipment by applying the latest technology and to improve the things that can be derived. Reflecting the derived improvements, we intend to present a plan for the design and implementation of a new unmanned traffic control device. The main improvements were designed to change the housing material of the unmanned traffic control equipment, simplify the configuration of the equipment, reduce the weight of the equipment, and change the purpose of the software. In order to evaluate the objective performance of the improved unmanned traffic control equipment through this study, it was requested to a public certification authority. The reliability of the equipment was secured through KC certification and durability test. It is intended to present the feasibility of securing the marketability of the unmanned traffic control equipment by comparing and evaluating the construction period and installation cost with the existing unmanned traffic control equipment.

Design and Verification of Electrical System for Unmanned Aerial Vehicle through Electrical Load Power Analysis (전원부하분석을 통한 무인항공기 전기시스템 설계 및 검증)

  • Woo, Heechae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.675-683
    • /
    • 2018
  • In this paper, we have proposed a design and verification methods of electrical system and power loads for unmaned aeriel vehicles(UAVs) through electrical load analysis. In order to meet a UAV system requirement and electrical system specifications, we have designed an electrical power system for efficient power supply and distribution and have theoretically analyzed the power loads according to the power consumption and power bus design of UAV. Using electrical system rig, the designed electrical power system has been experimentally verified. Also, we have performed several flight tests to verify the UAV electrical system and power loads. It is concluded that the proposed design and verification method of electrical system for UAV system.

Analysis and Design of Ku-Band Airborne Video Transceiver System for Smart-UAV (Smart-UAV를 위한 Ku-대역 탑재영상 송수신시스템의 설계 및 해석)

  • 김봉경;김종만;이동국;김태식;김인규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.807-813
    • /
    • 2004
  • This paper corresponded to Smart-UAV(Smart Unmanned Aerial Vehicle) technology development, a part of “The 21th Century New-Frontier Development Project” being propelled in accordance with enlarging the necessity of concentration development by selecting our strong technique being able to compete in the international society of knowledge based economy in the 21th century. Also, we designed Ku-band airborne video transceiver system performing to receive the TC(Tele-Command) signal needed to be applicable of Smart-UAV, and send the video and TM(Tele-Metry) signal at the same time. Moreover, we analyzed it in order to satisfy the system request of designed whole communication system, and established the validity on this paper going through by module simulation and manufacture of the whole system.