DOI QR코드

DOI QR Code

A Research on the Classification of Intelligence Level of Unmanned Grain Harvester

무인 곡물 수확기 지능수준 등급구분에 관한 연구

  • Na, Zhao (School of Agriculture Engineering and Food Science, Shandong University of Technology) ;
  • Pan, Young-Hwan (Institute of Interaction Design, Kookmin University)
  • 조나 (산동이공대학교 농업공정&식품과학학원) ;
  • 반영환 (국민대학교 인터액션다자인연구소)
  • Received : 2020.04.08
  • Accepted : 2020.05.20
  • Published : 2020.05.28

Abstract

The emergence of unmanned agricultural machinery has brought new research content to the development of precision agriculture. In order to speed up the research on key technologies of unmanned agricultural machinery, classification of intelligence level of unmanned agricultural machinery has become a primary task. In this study, the researchers take the complex interactive system consisting of unmanned grain harvester, task and driving environment as the research object, and carry out a research on the grading and classification of intelligent level of unmanned grain harvester. The researchers of this study also establish an evaluation model of unmanned grain harvester vehicle, which consists of human intervention degree, environmental complexity, and task complexity. Besides, the grading and classification of intelligence level of the unmanned grain harvester is carried out according to the human intervention degree, environmental complexity and the task complexity of the unmanned grain harvester. It provides a direction for the future development of unmanned agricultural machinery.

무인 농기계의 출현으로 정밀 농업의 발전에 새로운 연구 콘텐츠가 등장했다. 무인 농기계의 핵심 기술 연구를 가속화시키기 위해 먼저 무인 농기계 지능 수준 분류가 일 차적 과제가 되어 왔다. 이에 본 연구는 무인 곡물 수확기, 작업, 운전 환경으로 구성된 복합 양방향 시스템을 연구 대상으로 하고, 무인 곡물 수확기의 지능화 수준을 등급화하고 분류하는 연구를 수행한다. 본 연구의 연구자들은 인적 개입 정도, 환경적 복잡성, 작업 복잡성으로 구성된 무인 곡물 수확기 차량의 평가 모델을 확립한다. 또한, 무인 곡물 수확기의 지능화 수준 등급화와 분류는 인적 개입 정도, 환경적 복잡성과 작업 난이도에 따라 이루어진다. 무인 농기계의 미래 발전 방향을 제시하고 있다.

Keywords

References

  1. H. X. Qi, Y. B. Lan & Z. X .Lin. (2017). Application of Big Data in Precision Agriculture. Journal of Agricultural Science and Technology, 21(1), 1-10. DOI:10.13304/j.nykjdb.2018.0342
  2. M. Yang. (2006). Review and Prospect of Unmanned Automatic Vehicle Research. Journal of Harbin Institute of Technology, 8(38), 1259-1262.
  3. S. H. Kim & K. H. Lee. (2012). User Authentication Risk and Countermeasure in Intelligent Vehicles. Journal of the Korea Convergence Society, 3(1), 95-100. DOI:10.15207/JKCS.2012.3.1.007
  4. M. Parent & M. Yang. (2004,05). Road Map Towards Full Driving Automation. Applications of Advanced Technologies in Transportation Engineering , (PP.663-668). BEIJING:ASCE.
  5. Y. Jiang, Q. Wang, J. W. Gong & H. Y. Chen. (2015). Study on Time Consistency and Robustness of Local Path Planning for Unmanned Vehicles. Acta Automatica Sinica, 41(3), 518-527. DOI:10.16383/j.aas.2015.c140341
  6. Torii T. (2000). Research in autonomous agriculture vehicles in Japan. Computers & Electronics in Agriculture, 25(99), 133-153. DOI:10.1016/S0168-1699(99)00060-5
  7. Reid. J. F, Q. Zhang & Noguchi. (2000). Agricultural Automatic Guidance Research In North America. Computers & Electronics in Agriculture, 25(1), 155-167. DOI:10.1016/S0168-1699(99)00061-7
  8. Keicher. R. & Seufert. H. (2000). Automatic guidance for agricultural vehicles in Europe. Computers & Electronics in Agriculture, 25(99), 169-194. DOI:10.1016/S0168-1699(99)00062-9
  9. G. Yang. (2013). The Classification and Development Trend of Agricultural Machinery. Agricultural Science & Technology and Equipment, 6(228), 101-102. DOI:10.16313/j.cnki.nykjyzb.2013.06.020
  10. SAE J3016-201806. (2018. 06). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. New York:SAE.
  11. B. H. Kim, Y. J. Jeong, C. Lee & B. H. Lee. (2018). A Study on the Optimum Design of a Motor Shaft in Electric Vehicle Using HEEDS. Journal of the Korean Society of Mechanical Technology, 20(6), 751-756. DOI:10.17958/ksmt.20.6.201812.751
  12. Y. Yan, Z. M. Tang & J. F. Lu. (2011). Research on the Autonomous Evaluation of Ground Intelligent Robots. Journal of Huazhong University of Science and Technology (Natural Science Edition), (Supplement 2), 68-71. DOI:10.13245/j.hust.2011.s2.021
  13. B. Liu, X. Luo & J. Zhu. (2018). Simulation Research on Automatic Obstacle Avoidance Path Planning for Unmanned Vehicles. Computer Simulation, 35(2), 105-110.
  14. M. Dursun & A. Assmet (2018). Risk Based Multi Criteria Decision Making for Secure Image Transfer Between Unmanned Air Vehicle and Ground Control Station. Reliability Engineering & System Safety, 1(178), 31-39. DOI:10.1016/j.ress.2018.05.011
  15. M. Pierzchala, P. Giguere & R. Astrup. (2018). Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Computers&Electronic in Agriculture, 11(4), 217-225. DOI:10.1016/j.compag.2017.12.034
  16. H. Y. Chen, G. M. Xiong & J. W. Gong. (2014). Introduction to Driverless Cars. Beijing: Beijing Institute of Technology Press.
  17. Y. X. Yu. (2015). Application of Global Positioning Technology in Modern Agricultural Machinery. China Agricultural Mechanization, 3(7), 22-28. DOI:10.13733/j.jcam.issn.2095-5553.
  18. D. S. Seo. (2019). A Study on the Application of AI and Linkage System for Safety in the Autonomous Driving. Journal of the Korea Convergence Society, 10(11), 95-100. DOI:10.15207/JKCS.2019.10.11.095
  19. H. D. Jung, G. H. Kim, C. W. Park & D. R. Lee. (2016). A Study on the Cooling Effect of an Electric Car Battery between Battery with Heat Sink and without Heat Sink. Journal of the Korean Society of Mechanical Technology, 18(6), 879-885. DOI:10.17958/ksmt.18.6.201612.879