• 제목/요약/키워드: Unmanned Military Vehicles

검색결과 121건 처리시간 0.028초

선진국의 무인전투차량 개발동향 (The Korea Development Trend of Unmanned Combat Vehicles in developed country)

  • 황광택;강신우
    • 한국산학기술학회논문지
    • /
    • 제15권4호
    • /
    • pp.1831-1837
    • /
    • 2014
  • 무인전투차량은 군사과학기술의 영역에서 전투전력 핵심수단으로서 활용성이 인정되며, 인명손실의 최소화, 국방력 상승을 기대할 수 있다. 무인전투차량을 통한 무인전투체계 구축은 유기적으로 결합된 단위 시스템을 기반으로 조합된 복합운용개념에 해당하며, 전투력을 중장기적으로 확보하기 위한 하나의 수단으로서 국방획득 체계수립, 무인체계기술연구 등 다양한 영역으로 그 적합성을 부여할 수 있을 것으로 사료된다.

군용 소형 회전익무인기 감항인증기준에 대한 연구 (A Study on Airworthiness Certification Standards for Military Small Rotary-Wing Unmanned Aerial Vehicles)

  • 양준모;이상철
    • 한국항공운항학회지
    • /
    • 제29권2호
    • /
    • pp.78-83
    • /
    • 2021
  • In modern society, the use of small rotary-wing unmanned aerial vehicles such as drones is increasing. As the military considers tactics using drones, demand for drones is increasing. However, there is still no airworthiness certification standard for drones for safety. In this paper, we proposed airworthiness certification standards for small rotorcraft unmanned aerial vehicles based on CS-LURS in Europe and STANG-4703, 4738 (draft) of the North Atlantic Treaty Organization. In addition, airworthiness certification standards have been strengthened through the case of unmanned aerial vehicle accidents in operation by the Korean military. The airworthiness certification standards for small rotary-wing unmanned aerial vehicles will be supplemented through a demonstration project.

UAS 상호운용성 향상을 위한 STANAG 4586과 MAVLink 프로토콜 비교분석 및 개선방안 연구 (A Study on the Analysis and Improvement of STANAG 4586 / MAVLink Protocol for Interoperability Improvement of UAS)

  • 남경래;고정환;권철희;정소영
    • 한국군사과학기술학회지
    • /
    • 제23권6호
    • /
    • pp.618-638
    • /
    • 2020
  • An unmanned aerial vehicle(UAV) refers to an aircraft that has all or part of its functions to autonomously fly by grasping the surrounding environment by remote control on the ground without a pilot on board. With the development of unmanned aerial technology, civil/military forces are developing unmanned aerial vehicles for various purposes. In order to control unmanned aerial vehicles from the ground, communication protocols between unmanned aerial vehicles and ground control equipment are required, and civil/military forces have developed and used a photocall for different purposes. In this study, the characteristics of the MAVLink protocol used in the private sector and the STANAG 4586 protocol used in the military are compared/analyzed in detail to find elements to complement each other and to draw improvement measures for protocol unification.

지상무인전투차량 원격제어 인터페이스 운용 요구사항 개발 (Development of Operational Requirements of Remote Control Interfaces for Unmanned Ground Combat Vehicles)

  • 조성식;백승원
    • 시스템엔지니어링학술지
    • /
    • 제13권2호
    • /
    • pp.18-25
    • /
    • 2017
  • The use of unmanned combat systems is of interest for future battlefield. Advanced techniques are being actively studied to build fully autonomous unmanned systems. However, there are technical, ethical and legal limitations for the fully autonomous unmanned combat systems. In addition, a remote controlled system is necessary so far in order to prepare for situations where fully autonomous unmanned systems fail to function properly. Thus, a procedure of developing operational requirements in system level is proposed and interface requirements of unmanned combat vehicles for remote control are described in this study.

두 개의 광류센서를 이용한 소형무인로봇의 위치 추정 기술 (Localization with Two Optical Flow Sensors for Small Unmanned Ground Vehicles)

  • 허진욱;강신천;현동준
    • 한국군사과학기술학회지
    • /
    • 제16권2호
    • /
    • pp.95-100
    • /
    • 2013
  • Localization is very important for the autonomous navigation of Unmanned Ground Vehicles; however, it is difficult that they have a precise Inertial Navigation System(INS) sensor, especially Small Unmanned Ground Vehicle(SUGV). Moreover, there are some condition such as denial of global position system(GPS), GPS/INS integrated system is not robust. This paper proposes the estimation algorithm with optical flow sensor and INS. Being compared with previous researches, the proposed algorithm is suitable for skid steering vehicles. We revised the measurement model of previous research for the accuracy of side direction position. Experimental results were performed to verify the algorithm, and the result showed an excellent performance.

무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획 (Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain)

  • 윤승재;원문철
    • 한국군사과학기술학회지
    • /
    • 제20권6호
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.

$6{\times}6$ 가변 현수형 무인차량의 주행 분석 및 제어에 관한 연구 (Study on Vehicle Motion Analysis and Control for Skid Steering UGVs with Articulating Arms)

  • 강신천;허진욱;이상훈;지태영
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.747-752
    • /
    • 2011
  • Recently, skid steering methods have been increasingly applied to unmanned ground vehicles since they can provide a narrow turn that general steering methods like ackerman steering may not provide. However, dynamic behaviors of the skid steering vehicles with articulating arms which occur during a steering are very complicated and coupled. This makes it difficult to control vehicles and in severe case vehicles may loose stability. There are two methods to control unmanned ground vehicles. The first one is speed control method generally used with easiness and robustness in remote vehicle control. The next one is torque control allowing the vehicles to get better performance in several cases provided careful application is achieved. This paper addresses dynamic phenomena of skid steering vehicles during steering and compares with vehicle driving control methods between torque(traction force) control and speed control.

무인전투차량 요구사항분석 연구: 원격통제 및 자율주행 중심으로 (A Study on Requirement Analysis of Unmanned Combat Vehicles: Focusing on Remote-Controlled and Autonomous Driving Aspect)

  • 김동우;최인호
    • 시스템엔지니어링학술지
    • /
    • 제18권2호
    • /
    • pp.40-49
    • /
    • 2022
  • Remote-controlled and autonomous driving based on artificial intelligence are key elements required for unmanned combat vehicles. The required capability of such an unmanned combat vehicle should be expressed in reasonable required operational capability(ROC). To this end, in this paper, the requirements of an unmanned combat vehicle operated under a manned-unmanned teaming were analyzed. The functional requirements are remote operation and control, communication, sensor-based situational awareness, field environment recognition, autonomous return, vehicle tracking, collision prevention, fault diagnosis, and simultaneous localization and mapping. Remote-controlled and autonomous driving of unmanned combat vehicles could be achieved through the combination of these functional requirements. It is expected that the requirement analysis results presented in this study will be utilized to satisfy the military operational concept and provide reasonable technical indicators in the system development stage.

군사용 무인항공기의 유형별 특징과 군사적 활용 방안 연구 (A Study on the Characteristics and Military Applications of Different Types of Unmanned Aerial Vehicles for Military Use)

  • 김영길;이경행;박상혁
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.425-430
    • /
    • 2024
  • 본 연구는 군사용 무인항공기(드론)의 다양한 유형별 특징과 각 유형이 군사 작전에서 어떻게 활용될 수 있는지를 분석하였다. 연구 범위는 고정익, 회전익, 하이브리드, 스웜 드론의 구조적 특징, 장단점, 군사적 활용 사례를 중심으로 하였다. 또한 드론 기술의 발전 방향과 그에 따른 군사 전략의 변화, 기회와 도전 과제를 논의하였다. 연구 결과, 각 유형의 드론은 정찰, 감시, 타격, 물류, 수색 및 구조 등 다양한 군사 작전에서 중요한 역할을 수행하고 있으며, 인공지능, 자율비행, 스웜 기술 등의 발전으로 그 활용 범위가 더욱 확대될 것으로 전망된다. 다만 드론 운용의 안전성, 윤리성 확보와 국제 규범 마련이 주요 과제로 대두되었다.

해양 유·무인 수상함정의 감시정찰 임무를 위한 위치-경로 문제 (Location-Routing Problem for Reconnaissance Surveillance Missions of the Maritime Manned-Unmanned Surface Vehicles)

  • 이진호
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.238-245
    • /
    • 2023
  • As technologies have been more quickly developed in this 4th Industry Revolution era, their application to defense industry has been also growing. With these much advanced technologies, we attempt to use Manned-Unmanned Teaming systems in various military operations. In this study, we consider the Location-Routing Problem for reconnaissance surveillance missions of the maritime manned-unmanned surface vehicles. As a solution technique, the two-phase method is presented. In the first location phase, the p-median problem is solved to determine which nodes are used as the seeds for the manned vehicles using Lagrangian relaxation with the subgradient method. In the second routing phase, using the results obtained from the location phase, the Vehicle Routing Problems are solved to determine the search routes of the unmanned vehicles by applying the Location Based Heuristic. For three network data sets, computational experiments are conducted to show the performance of the proposed two-phase method.