• Title/Summary/Keyword: Unmanned Military Vehicles

Search Result 119, Processing Time 0.242 seconds

The Korea Development Trend of Unmanned Combat Vehicles in developed country (선진국의 무인전투차량 개발동향)

  • Hwang, Gwang-Tak;Gang, Shin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1831-1837
    • /
    • 2014
  • Unmanned combat vehicles is recognized as a key tool to utilize the military combat power in the area of science and technology. It can be expected to minimize the lose of human life and increase the military power. Unmanned combat systems are based on the complex operation concept and the unit system can be manufactured by combination on unmanned combat vehicles. For the unmanned combat systems, military power exists to sustain the acquisition establishment system and unmanned technology, which is considered to give the suitability such as application area.

A Study on Airworthiness Certification Standards for Military Small Rotary-Wing Unmanned Aerial Vehicles (군용 소형 회전익무인기 감항인증기준에 대한 연구)

  • Yang, Junmo;Lee, Sangchul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.78-83
    • /
    • 2021
  • In modern society, the use of small rotary-wing unmanned aerial vehicles such as drones is increasing. As the military considers tactics using drones, demand for drones is increasing. However, there is still no airworthiness certification standard for drones for safety. In this paper, we proposed airworthiness certification standards for small rotorcraft unmanned aerial vehicles based on CS-LURS in Europe and STANG-4703, 4738 (draft) of the North Atlantic Treaty Organization. In addition, airworthiness certification standards have been strengthened through the case of unmanned aerial vehicle accidents in operation by the Korean military. The airworthiness certification standards for small rotary-wing unmanned aerial vehicles will be supplemented through a demonstration project.

A Study on the Analysis and Improvement of STANAG 4586 / MAVLink Protocol for Interoperability Improvement of UAS (UAS 상호운용성 향상을 위한 STANAG 4586과 MAVLink 프로토콜 비교분석 및 개선방안 연구)

  • Nam, Gyeongrae;Go, Jeonghwan;Kwon, Cheolhee;Jeong, Soyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.618-638
    • /
    • 2020
  • An unmanned aerial vehicle(UAV) refers to an aircraft that has all or part of its functions to autonomously fly by grasping the surrounding environment by remote control on the ground without a pilot on board. With the development of unmanned aerial technology, civil/military forces are developing unmanned aerial vehicles for various purposes. In order to control unmanned aerial vehicles from the ground, communication protocols between unmanned aerial vehicles and ground control equipment are required, and civil/military forces have developed and used a photocall for different purposes. In this study, the characteristics of the MAVLink protocol used in the private sector and the STANAG 4586 protocol used in the military are compared/analyzed in detail to find elements to complement each other and to draw improvement measures for protocol unification.

Development of Operational Requirements of Remote Control Interfaces for Unmanned Ground Combat Vehicles (지상무인전투차량 원격제어 인터페이스 운용 요구사항 개발)

  • Jo, Seongsik;Baik, Seungwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.18-25
    • /
    • 2017
  • The use of unmanned combat systems is of interest for future battlefield. Advanced techniques are being actively studied to build fully autonomous unmanned systems. However, there are technical, ethical and legal limitations for the fully autonomous unmanned combat systems. In addition, a remote controlled system is necessary so far in order to prepare for situations where fully autonomous unmanned systems fail to function properly. Thus, a procedure of developing operational requirements in system level is proposed and interface requirements of unmanned combat vehicles for remote control are described in this study.

Localization with Two Optical Flow Sensors for Small Unmanned Ground Vehicles (두 개의 광류센서를 이용한 소형무인로봇의 위치 추정 기술)

  • Huh, Jinwook;Kang, Sincheon;Hyun, Dongjun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Localization is very important for the autonomous navigation of Unmanned Ground Vehicles; however, it is difficult that they have a precise Inertial Navigation System(INS) sensor, especially Small Unmanned Ground Vehicle(SUGV). Moreover, there are some condition such as denial of global position system(GPS), GPS/INS integrated system is not robust. This paper proposes the estimation algorithm with optical flow sensor and INS. Being compared with previous researches, the proposed algorithm is suitable for skid steering vehicles. We revised the measurement model of previous research for the accuracy of side direction position. Experimental results were performed to verify the algorithm, and the result showed an excellent performance.

Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain (무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획)

  • Yun, SeungJae;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.

Study on Vehicle Motion Analysis and Control for Skid Steering UGVs with Articulating Arms ($6{\times}6$ 가변 현수형 무인차량의 주행 분석 및 제어에 관한 연구)

  • Kang, Sin-Cheon;Huh, Jin-Wook;Lee, Sang-Hoon;Jee, Tae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.747-752
    • /
    • 2011
  • Recently, skid steering methods have been increasingly applied to unmanned ground vehicles since they can provide a narrow turn that general steering methods like ackerman steering may not provide. However, dynamic behaviors of the skid steering vehicles with articulating arms which occur during a steering are very complicated and coupled. This makes it difficult to control vehicles and in severe case vehicles may loose stability. There are two methods to control unmanned ground vehicles. The first one is speed control method generally used with easiness and robustness in remote vehicle control. The next one is torque control allowing the vehicles to get better performance in several cases provided careful application is achieved. This paper addresses dynamic phenomena of skid steering vehicles during steering and compares with vehicle driving control methods between torque(traction force) control and speed control.

A Study on Requirement Analysis of Unmanned Combat Vehicles: Focusing on Remote-Controlled and Autonomous Driving Aspect (무인전투차량 요구사항분석 연구: 원격통제 및 자율주행 중심으로)

  • Dong Woo, Kim;In Ho, Choi
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.40-49
    • /
    • 2022
  • Remote-controlled and autonomous driving based on artificial intelligence are key elements required for unmanned combat vehicles. The required capability of such an unmanned combat vehicle should be expressed in reasonable required operational capability(ROC). To this end, in this paper, the requirements of an unmanned combat vehicle operated under a manned-unmanned teaming were analyzed. The functional requirements are remote operation and control, communication, sensor-based situational awareness, field environment recognition, autonomous return, vehicle tracking, collision prevention, fault diagnosis, and simultaneous localization and mapping. Remote-controlled and autonomous driving of unmanned combat vehicles could be achieved through the combination of these functional requirements. It is expected that the requirement analysis results presented in this study will be utilized to satisfy the military operational concept and provide reasonable technical indicators in the system development stage.

Location-Routing Problem for Reconnaissance Surveillance Missions of the Maritime Manned-Unmanned Surface Vehicles (해양 유·무인 수상함정의 감시정찰 임무를 위한 위치-경로 문제)

  • Jinho Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.238-245
    • /
    • 2023
  • As technologies have been more quickly developed in this 4th Industry Revolution era, their application to defense industry has been also growing. With these much advanced technologies, we attempt to use Manned-Unmanned Teaming systems in various military operations. In this study, we consider the Location-Routing Problem for reconnaissance surveillance missions of the maritime manned-unmanned surface vehicles. As a solution technique, the two-phase method is presented. In the first location phase, the p-median problem is solved to determine which nodes are used as the seeds for the manned vehicles using Lagrangian relaxation with the subgradient method. In the second routing phase, using the results obtained from the location phase, the Vehicle Routing Problems are solved to determine the search routes of the unmanned vehicles by applying the Location Based Heuristic. For three network data sets, computational experiments are conducted to show the performance of the proposed two-phase method.

Analysis of the Human Performance and Communication Effects on the Operator Tasks of Military Robot Vehicles by Using Extended Petri Nets (확장된 페트리네트를 이용한 차량형 군사로봇의 운용자 성능 및 통신장애 영향분석)

  • Choi, Sang Yeong;Yang, Ji Hyeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.162-171
    • /
    • 2017
  • Unmanned military vehicles (UMVs) are most commonly characterized as dealing with dull, dirty, and dangerous tasks with automation. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robot's operation, and teleoperate them to achieve his or her mission. Thus, operator capacity, together with robot autonomy and user interface, is one of the most important design factors in the research and development of the UMVs. Further, communication may affect the operator task performance. In this paper, we analyze the operator performance and the communication effects on the operator performance by using the extended Petri nets, called OTSim nets. The OTSim nets was designed by the authors, being extended using pure Petri nets.