• 제목/요약/키워드: Unmanned Intelligent Platform

검색결과 20건 처리시간 0.03초

UUV Platform Optimal Design for Overcoming Strong Current

  • Kim, Min-Gyu;Kang, Hyungjoo;Lee, Mun-Jik;Cho, Gun Rae;Li, Ji-Hong;Kim, Cheol
    • 한국해양공학회지
    • /
    • 제35권6호
    • /
    • pp.434-445
    • /
    • 2021
  • This paper proposes an optimal design method for an unmanned underwater vehicle (UUV) platform to overcome strong current. First, to minimize the hydrodynamic drag components in water, the vehicle is designed to have a streamlined disc shape, which help maintaining horizontal motion (zero roll and pitch angles posture) while overcoming external current. To this end, four vertical thrusters are symmetrically mounted outside of the platform to stabilize the vehicle's horizontal motion. In the horizontal plane, four horizontal thrusters are symmetrically mounted outside of the disc, and each of them has the same forward and reverse thrust performances. With these four thrusters, a specific thrust vector control (TVC) method is proposed, and for external current in any direction, four horizontal thrusters are controlled to generate a vectored thrust force to encounter the current while minimizing the vehicle's rotation and maintaining its heading. However, for the numerical simulations, the vehicle's hydrodynamic coefficients related to the horizontal plane are derived based on both theoretical and empirically derived formulas. In addition to the simulation, experimental studies in both the water tank and circulating water channel are performed to verify the vehicle's various final performances, including its ability to overcome strong current.

Growth Monitoring for Soybean Smart Water Management and Production Prediction Model Development

  • JinSil Choi;Kyunam An;Hosub An;Shin-Young Park;Dong-Kwan Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.58-58
    • /
    • 2022
  • With the development of advanced technology, automation of agricultural work is spreading. In association with the 4th industrial revolution-based technology, research on field smart farm technology is being actively conducted. A state-of-the-art unmanned automated agricultural production demonstration complex was established in Naju-si, Jeollanam-do. For the operation of the demonstration area platform, it is necessary to build a sophisticated, advanced, and intelligent field smart farming model. For the operation of the unmanned automated agricultural production demonstration area platform, we are building data on the growth of soybean for smart cultivated crops and conducting research to determine the optimal time for agricultural work. In order to operate an unmanned automation platform, data is collected to discover digital factors for water management immediately after planting, water management during the growing season, and determination of harvest time. A subsurface drip irrigation system was established for smart water management. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. Vegetation indices were collected using drones to find key factors in soybean production prediction. In addition, major growth characteristics such as stem length, number of branches, number of nodes on the main stem, leaf area index, and dry weight were investigated. By discovering digital factors for effective decision-making through data construction, it is expected to greatly enhance the efficiency of the operation of the unmanned automated agricultural production demonstration area.

  • PDF

가정용 지능형 경비 로봇 시스템 개발 (Development of an Intelligent Security Robot System for Home Surveillance)

  • 박정호;신동관;우춘규;김형철;권용관;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.810-816
    • /
    • 2007
  • A security robot system named EGIS-SR is a mobile security robot through one of the new growth engine project in robotic industries. It allows home surveillance through an autonomous mobile platform using onboard cameras and wireless security sensors. EGIS-SR has many sensors to allow autonomous navigation, hierarchical control architecture to handle lots of situations in monitoring home surveillance and mighty networks to achieve unmanned security services. EGIS-SR is tightly coupled with a networked security environment, where the information of the robot is remotely connected with the remote cockpit and patrol man. It achieved an intelligent unmanned security service. The robot is a two-wheeled mobile robot and has casters and suspension to overcome a doorsill. The dynamic motion is verified through $ADAMS^{TM}$ simulation. For the main controller, PXA270 based hardware platform based on linux kernel 2.6 is developed. In the linux platform, data handling for various sensors and the localization algorithm are performed. Also, a local path planning algorithm for object avoidance with ultrasonic sensors and localization using $StarGazer^{TM}$ is developed. Finally, for the automatic charging, a docking algorithm with infrared ray system is implemented.

후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소 (Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor)

  • 김태현;황대규;김봉상;이성희;문희창
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.

On the Derivation of Safety Requirements and Specifications based Integrated System Operation Scenario for the Development of Unmanned Courier Storage Device Platform in Urban Areas

  • Lee, Sang Min;Park, Jae Min;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권4호
    • /
    • pp.103-111
    • /
    • 2021
  • In modern society, digital lifestyles are spreading to minimize contact with people and to receive contactless information. The spread trend has established an unmanned distribution system in which transactions through contactless technologies such as kiosks and chatbots are activated in face-to-face transactions with sellers and consumers. In order to streamline logistics supply worldwide, digital new deal based joint logistics hubs, unmanned courier storage platforms, and fresh logistics based last mile services have been developed into unmanned logistics systems, focusing on the intelligent logistics system automation process. Unmanned courier storage system installed in urban areas and home to daily logistics where volume is concentrated are provided with fresh logistics services through cold chain and receiving freights in contactless environments. Development is also underway to minimize safety accidents caused by courier services, such as managing various information based on the integrated control system. This paper defines the concept of integrated operation for the development of a platform for contactless unmanned courier storage device developed into next-generation logistics system. In addition, we intend to develop systems engineering-based output for deriving safety requirements and specifications by identifying risk sources that may occur in the operational scenario. Therefore, the goal is to establish a foundation for safety and reliability between interfaces of logistics systems to be installed in apartment and subway station environments that want to provide unmanned logistics services to various consumers.

다중 UAV-RIS 네트워크를 위한 자원 할당 알고리즘 (Resource Allocation Algorithm for Multiple RIS-Assisted UAV Networks)

  • 박희재;박래혁
    • Journal of Platform Technology
    • /
    • 제11권1호
    • /
    • pp.3-10
    • /
    • 2023
  • 최근 Unmanned Aerial Vehicles (UAVs)은 높은 유동성 및 낮은 하드웨어 비용으로 5G, 6G 무선 통신에서 큰 관심을 받고 있다. 여전히 Blockage와 에너지 문제가 존재하지만 이러한 문제들은 Reconfigurable Intelligent Surface (RIS)를 활용하여 해결할 수 있다. 또한 RIS를 UAV 통신에 이용함으로써 신호를 받지 못하는 사용자에게 신호를 전송하여 Spectral Efficiency를 향상시키며, 에너지 소비를 줄일 수 있다. 현재 대부분의 연구들은 송신 전력과 RIS 위상을 교대로 최적화하여 Power Consumption 최소화 및 데이터 전송 Delay 최소화 등의 목적을 달성하였다. 본 논문에서는 대역폭 최적화를 포함하여 합산 정보 전달율을 최대화하는 알고리즘을 제안한다. 이에 대한 성능평가를 진행하였고, 시뮬레이션을 통해 제안한 알고리즘의 우수성을 보였다.

  • PDF

광범위 시야 정보를 위한 UAV와 UGV의 협업 연구 (Cooperative UAV/UGV Platform for a Wide Range of Visual Information)

  • 이재근;정하민;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제24권3호
    • /
    • pp.225-232
    • /
    • 2014
  • 본 논문은 기존의 UGV(Unmanned Ground Vehicle)에서 얻을 수 없었던 광범위한 시야를 얻기 위하여 UGV와 UAV(Unmanned Aerial Vehicle)를 함께 운용하는 플랫폼을 제안한다. UAV는 사용자 조종 없이 UGV 상단의 마커를 인식 한 후 UGV를 추적하며 광범위한 시야를 UGV 사용자에게 전달해 준다. UGV는 사용자가 직접 조정하며, 상단에 마커가 붙어 있는 넓은 알루미늄 판위에 UAV는 자동 이륙, 착륙 한다. UAV에는 2개의 카메라가 설치되어 있고, 하나는 마커인식을 위해 다른 하나는 전방의 광범위한 시야를 위하여 사용된다. UAV가 UGV를 추적하는데 있어 인식의 정확도를 높이기 위하여 마커 인식을 사용하였고, 전체 시스템의 통신은 WiFi 통신을 사용하였다. 실험의 결과를 통해 제안된 방법이 광범위 시야 정보를 얻기 위하여 UAV/UGV의 협업 연구에 효과적으로 적용될 수 있음을 보여준다.

밭 노지 작업을 위한 모듈형 농업 로봇 플랫폼 개선에 관한 연구 (Improvements to a Modular Agricultural Robot Platform for Field Work)

  • 김동우;홍형길;조용준;윤해룡;오장석;강민수;박희창;서갑호
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.80-87
    • /
    • 2021
  • Our study introduces an improved modular agricultural platform to provide convenience to agricultural workers. We upgrade the platform design in three parts, namely, by adding a 458 pattern tire, electricity control, and four-wheel steering function, to improve the platform performance. Results showed that the upgrades enhanced the platform performance and reduced its overall weight as compared with the existing platform. To demonstrate the performance of our improved platform, we conducted five types of experiments with respect to the climbing angle, variable width, attitude control, speed, and obstacle passing.

밭 노지 환경 주행을 위한 모듈형 농업 로봇 플랫폼에 대한 연구 (A Study on Modular Agricultural Robotic Platform for Upland)

  • 조용준;우성용;송수환;홍형길;윤해룡;오장석;김준성;김동우;서갑호;김대희
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.124-130
    • /
    • 2020
  • This paper designed modular agricultural robotic platform capable of a variety of agricultural tasks to address the problems caused by a decline in agricultural populations and an increase in average age. We propose a modular robotic platform that can perform many tasks required in field farming by replacing only work modules with common robotic platforms. This platform is capable of steering while driving on four wheels in an upland environment where farm work is performed, and an attitude control module is attached to each drive module to control the attitude of the platform. In addition, the width of the platform is designed to be variable in order to operate in various ridges according to the crop cultivation method. Finally, we evaluated five items: variable width, gradient, attitude control angle, step and road speed in order to carry out the farming industry while maintaining a stable posture.

Optimal design of hydraulic support landing platform for a four-rotor dish-shaped UUV using particle swarm optimization

  • Zhang, Bao-Shou;Song, Bao-Wei;Jiang, Jun;Mao, Zhao-Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권5호
    • /
    • pp.475-486
    • /
    • 2016
  • Four-rotor dish-shaped unmanned underwater vehicles (FRDS UUVs) are new type underwater vehicles. The main goal of this paper is to develop a quick method to optimize the design of hydraulic support landing platform for the new UUV. In this paper, the geometry configuration and instability type of the platform are defined. Computational investigations are carried out to study the hydrodynamic performance of the landing platform using the Computational Fluid Dynamics (CFD) method. Then, the response surface model of the optimization objective is established. The intelligent particle swarm optimization (PSO) is applied to finding the optimal solution. The result demonstrates that the stability of landing platform is significantly improved with the global objective index increasing from 1.045 to 1.158 (10.86% higher) after the optimization process.