• Title/Summary/Keyword: Unmanned Airship

Search Result 20, Processing Time 0.037 seconds

A study on Requirements of the Test Flight Safety for a 350m Unmanned Airship (50m급 무인비행선 시험비행 안전성 요구사항에 관한 연구)

  • Jeong, B.G.;Shin, D.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.2
    • /
    • pp.1-15
    • /
    • 2004
  • In this study, we analyze technical requirements for a 50m unmanned airship order to assure safety in the test flight operation. The 50m class unmanned airship developed by Airship Group in Korea Aerospace Research Institute(KARI). The 50m class unmanned airship was developed as a scale-down model of 200m class stratosphere unmanned airship. This study reviews specifications and characteristics of 50m class unmanned airship and develops Airworthiness Requirements on the basis of current effective Aviation Act, Airworthiness standards, and relevant international documents. The developed requirements can be applied to the safety assessment of the 200m class stratosphere unmanned airship.

  • PDF

Design of Flight Control System for KARI Unmanned Airship (50m급 중고도 무인 비행선의 자동비행시스템 설계)

  • 김성필;주광혁;안이기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2004
  • The flight control system designed for an unmanned airship, which is under development by KARI, is in reduced. First, the dynamic characteristics of the airship are addressed, which are fairly different from those of the nominal aircraft. In order to implement autonomous flight for the unmanned airship, flight control logic is designed including autopilot and guidance law. The autopilot is designed under consideration of the velocity region of the unmanned airship. The guidance laws are implemented in main operational modes such as point navigation, station keeping and spiral up/down for emergency return. Their simulation results are also presented in order to validate performances of the flight control system.

Analysis of the Static and Dynamic Stability Properties of the Unmaned Airship

  • Lee, Hae Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.82-94
    • /
    • 2001
  • The purpose of this paper is to analyze the static and dynamic stability-of the unmanned airship under development ; the target airship's over-all length of hull is 50m and the maximum diameter is 12.5m. For the analysis, the dynamic model of an airship was defined and both the nonlinear and linear dynamic equations of motion were derived. Two different configuration models (KA002Y and KA003Y) of the airship were used for the target model of the static stability analysis and the dynamic stability analysis. From the result of analyses, though the airship is unstable in static stability, dynamic characteristics of the airship can provide the stable dynamic stability. All of the results, airship models and dynamic flight equations will be an important basement and basic information for the next step of developing the automatic flight control system(AFCS) and the stability augmentation system(SAS) for the unmanned airship as well as for the stratospheric airship in the future.

  • PDF

Design and Flight Test of Path Following System for an Unmanned Airship (무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험)

  • Jung, Kyun-Myung;Sung, Jae-Min;Kim, Byoung-Soo;Je, Jeong-Hyeong;Lee, Sung-Gun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.

Development of 50m Class Airship Structures (복합재를 이용한 50m급 비행선 구조개발)

  • 양남선;강왕구;김동민;이진우;염찬홍
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.127-131
    • /
    • 2003
  • KARI developed 50m class unmanned airship. The airship employ the pressure envelope design principle. The envelope must be considered as a main structural element of the airship. The envelope & three ballonets are fabricated by polyfiber composite laminates. Other structural components (gondola, tailwing, nosecone & engine mounts) are manufactured by carbon fiber & glass fiber laminates. In order to develop a big unmanned airship, a large amount of structural design, analysis and tests had to be made. The paper describes the structural configuration of the 50m class uumanned airship which are basic starting point of the structural development of an airship. The paper includes the various designing processes, components development tests and analysis results. Envelope & ballonets development processes which are very different to conventional airplane design are given in details with actual analysis & test results. The paper also describes the structural design and analysis results for other composite made structures. Each components were tested by static design limit loads and structural safety were confirmed. The paper shows the manufactured structural components and assembled airship.

  • PDF

Design and Tests of an Airship Pressurization System (비행선 여압장치 설계 및 시험)

  • Lee, Yung-Gyo;Kim, Dong-Min;Lee, Jin-Woo;Yeom, Chan-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1709-1714
    • /
    • 2004
  • Pressurization system of a 50m unmanned airship was manufactured according to the detailed design. In this paper. the whole procedures including system design. simulation and fabrication were described. The fabricated part were ground tested to check compliances with design requirements. Ground tests include operational tests, leakage tests, endurace tests and low temperature environmental tests. Results shows pressurization system of a 50m unmanned airship meets design requirements. Currently. pressurization system is installed to the KARI airship, Via 50m and performance verification through the flight tests are being conducted.

  • PDF

Stationkeeping of an Airship

  • Park, Chang-Su;Bang, Hyo-Choong;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.1-148
    • /
    • 2001
  • The airship is starting to receive new highlights as a stable floating platform. A floating platform can serve as a telecommunication relay station or an environmental outpost. Much of these operations require unmanned autonomous operation on the airship. Due to difficulties in modelling and identifying the airship, controlling the airship is not an easy task. Different from the normal aircraft, the airship is affected by "added mass" and buoyancy. The added mass is the additional mass felt required to move the object in a fluid. As we are searching for a stable floating platform, controlling the airship to keep station is critical. We use a simple airship model with added mass for simulation. Classical controller is used to find acceptable airship performances.

  • PDF

Dynamic Equations of Motion and Trajectory Optimization for the Mid-Altitude Unmanned Airship Platform (중고도 무인비행선의 궤적 생성을 위한 운동방정식 유도 및 궤적 최적화)

  • Lee, Sang-Jong;Bang, Hyo-Chung;Hong, Jin-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.46-55
    • /
    • 2006
  • In general, 3-dimensional point-mass equation has been widely used for the trajectory optimization of the fixed-wing aircraft and reentry vehicle. But it should be modified and represent target vehicle's own characteristics. For a lighter-than-air vehicle such as an airship, there exists different and peculiar flight characteristics compared with the aircraft. The first part of this paper is to derive the dynamic equation of motion for the mid-altitude unmanned airship and the second part is to obtain the optimal trajectories under the minimal time flight given constraints. The trajectory optimization problem is converted into the nonlinear programming problem using Sequential Quadratic Programming approach. Finally numerical solutions are presented in the last part of the paper.

Design of the Automatic Flight and Guidance Controller for 50m Unmanned Airship Platform

  • Lee, Sang-Jong;Kim, Seong-Pil;Kim, Tae-Sik;Kim, Dong-Min;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.64-75
    • /
    • 2005
  • The Stratospheric Airship Platform (SAP) has a capability of performing the autonomous and guidance flight to satisfy given missions. To be used as the High Altitude Platforms (HAPs), the capabilities of controlling platform's accurate position and keeping the station point are the most important features. Under this circumstances Autonomous Flight Control System (AFCS) is a critical system and plays a key role in achieving the given requirements and succeeding in missions. In this paper, the design and analysis results of the AFCS algorithms and controller are presented. The brief summary of the AFCS hardware structure is also explained. The autopilot controller and guidance logics were designed based on the linear dynamics of the unmanned airship platform and the full nonlinear dynamics was considered to evaluate and verify their performances.

무인비행선 HILS 시스템 개발

  • Kim, Seong-Pil;Ahn, Iee-Ki;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • In this paper, a HILS(Hardware-In-the-Loop-Simulation) System designed for an unmanned airship, which is under development by KARI, is introduced. A HILS system is essential to validate flight control systems on the ground. The HILS system consists of several systems: a virtual ADT(airborne data terminal) system, a virtual payload system, a virtual airship system, and a status display system. Also, a 3-axis motion table and an inertial navigation sensor are included. The reliability of the flight control computer has been validated by HILS tests.

  • PDF