• Title/Summary/Keyword: Unknown protein

Search Result 630, Processing Time 0.026 seconds

Effects of High-fat Diet on Type-I Muscle Loss in Rats (고지방식이가 쥐의 Type-I 근육손실에 미치는 영향)

  • Baek, Kyung-Wan;Cha, Hee-Jae;Park, Jung-Jun
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1509-1515
    • /
    • 2013
  • The term lipotoxicity has been used to describe how excess lipid accumulation leads to cellular dysfunction and death in non-adipose tissues, including skeletal muscle. While lipotoxicity has been found in cultured skeletal muscle cells with high-fat feeding, the consequences of lipotoxicity in vivo are still unknown, particularly in Type-I muscle, which is metabolically affected by lipotoxicity. The aim of this study was to investigate the effects of a high-fat diet on changes in the morphology and apoptotic protein expression of Type-I muscle loss in rats. The rats were fed either a high-fat diet or a normal diet for six weeks, and then lipid accumulation, inflammation response, and nucleus infiltration were measured, and PARP protein expression was cleaved by Oil Red O staining, H & E staining, and Western blot, respectively. Lipid accumulation, inflammation response, nucleus infiltration, and cleaved PARP protein expression were significantly (p<0.05) higher in the high-fat diet group than they were in the normal diet group. The weight of Type-I muscle tended to be lower in the high-fat diet group compared to the normal diet group, but the difference was not statistically significant. These results indicate that a high-fat diet triggers cell death in Type-I muscle via lipotoxicity, which suggests that a high-fat diet may be associated with sarcopenia.

SREBP-1c Ablation Protects Against ER Stress-induced Hepatic Steatosis by Preventing Impaired Fatty Acid Oxidation (지방산 산화 장애 제어를 통한 SREBP-1c 결핍의 소포체 스트레스 유발 비알콜성지방간 보호작용)

  • Lee, Young-Seung;Osborne, Timothy F.;Seo, Young-Kyo;Jeon, Tae-Il
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.796-805
    • /
    • 2021
  • Hepatic endoplasmic reticulum (ER) stress contributes to the development of steatosis and insulin resistance. The components of unfolded protein response (UPR) regulate lipid metabolism. Recent studies have reported an association between ER stress and aberrant cellular lipid control; moreover, research has confirmed the involvement of sterol regulatory element-binding proteins (SREBPs)-the central regulators of lipid metabolism-in the process. However, the exact role of SREBPs in controlling lipid metabolism during ER stress and its contribution to fatty liver disease remain unknown. Here, we show that SREBP-1c deficiency protects against ER stress-induced hepatic steatosis in mice by regulating UPR, inflammation, and fatty acid oxidation. SREBP-1c directly regulated inositol-requiring kinase 1α (IRE1α) expression and mediated ER stress-induced tumor necrosis factor-α activation, leading to a reduction in expression of peroxisome proliferator-activated receptor γ coactivator 1-α and subsequent impairment of fatty acid oxidation. However, the genetic ablation of SREBP-1c prevented these events, alleviating hepatic inflammation and steatosis. Although the mechanism by which SREBP-1c deficiency prevents ER stress-induced inflammatory signaling remains to be elucidated, alteration of the IRE1α signal in SREBP-1c-depleted Kupffer cells might be involved in the signaling. Overall, the results suggest that SREBP-1c plays a crucial role in the regulation of UPR and inflammation in ER stress-induced hepatic steatosis.

Extracts of Torilis Japonica Suppresses of Ultraviolet B-induced Matrix Metalloproteinase-1/-3 Expressions in Human Dermal Fibroblasts (사람 피부 섬유아세포에서 자외선으로 유도된 기질분해효소-1과 기질분해효소-3의 발현 유도에 대한 사상자 추출물의 억제효과)

  • Noh, Eun Mi;Song, Hyun Kyung;Kim, Jeong Mi;Lee, Guem San;Kwon, Kang Beom;Lee, Young Rae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.175-180
    • /
    • 2019
  • Torilis Japonica (TJ) has been used as an anti-allergy, antifungal, and antibacterial agent. Recent studies have reported that it also shows anti-cancer effects. It is report that TJ inhibits melanin synthesis in melanocyte in the skin. However, the effect and mechanism of TJ extract (TJE) on Ultraviolet (UV)B-induced photoaging are unknown. In this study, we investigated the preventive effects of TJE on matrix metalloproteinase (MMP)-1 and MMP-3 expressions and the underlying molecular mechanism in UVB-irradiated primary human dermal fibroblasts (HDFs). The effect of TJE on HDF cell viability was determined using the XTT assay and cell counting. MMP-1 and MMP-3 expressions levels were measured by western blotting and real-time PCR analysis. Activations of mitogen-activated protein kinase (MAPKinase), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$), and activator protein-1(AP-1) were measured by western blotting. Our results showed that TJE effectively reduced UVB-induced MMP-1 and MMP-3 protein and mRNA levels. Moreover, TJE significantly blocked the UVB-induced activation of MAPK (p38 and JNK) and transcription factors ($NF-{\kappa}B$ and AP-1), but not ERK. Taken together, our results suggest that the TJE inhibits UVB-induced MMP expressions in HDFs and its may be a potential agent for the prevention and treatment of skin photoaging.

Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2

  • Li, Tao;Wan, Yingchun;Sun, Lijuan;Tao, Shoujun;Chen, Peng;Liu, Caihua;Wang, Ke;Zhou, Changyu;Zhao, Guoqing
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.414-422
    • /
    • 2019
  • There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-$1{\beta}$ and tumor-necrosis factor-${\alpha}$ in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and $NF-{\kappa}B$ in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.

Anti-cancer effect of glabridin by reduction of extracellular vesicles secretion in MDA-MB-231 human breast cancer cells (유방암세포에서 세포외 소포체 분비 감소를 통한 glabridin의 항암효과)

  • Choi, Sang-Hun;Hwang, Jin-Hyeon;Baek, Moon-Chang;Cho, Young-Eun
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.240-249
    • /
    • 2022
  • Purpose: Glabridin (GD) is a bio-available isoflavane isolated from the root extract of licorice (Glycyrrhiza glabra L.). It exhibits a variety of pharmacological activities such as anti-inflammatory and anti-oxidant activities. However, extracellular vesicles (EVs) secretion and the anti-cancer mechanism of action remains largely unknown. The present study investigates the anticancer effects of GD by determining the inhibition of EVs secretion in the human breast cancer cell line, MDA-MB-231. Methods: Cell viability, reactive oxygen species (ROS) production, migration, invasion rate, and vascular endothelial growth factor (VEGF) concentration were assessed in MDA-MB-231 cells treated with increasing concentrations of GD (0.1, 1, 5, 10, 20 µM). Subsequently, EV secretion and exosomal DEL-1 protein expression were evaluated to determine the anticancer effects of GD. Results: The results showed that GD significantly inhibited the cell proliferation of MDA-MB-231 cells in a dose- or time-dependent manner. Also, ROS production and apoptosis marker protein cleaved caspase-3 were significantly increased in GD-treated MDA-MB-231, compared to control. Furthermore, GD exposure resulted in significantly decreased not only migration and invasion rates but also the VEGF concentration, thereby contributing to a reduction in angiogenesis. Interestingly, the concentration and number of EVs as well as EV marker proteins, such as CD63 and TSG101, were decreased in GD-treated MDA-MB-231 cells. Markedly, extracellular matrix protein DEL-1 as angiogenesis factor was decreased in EVs from GD-treated MDA-MB-231 cells. Conclusion: This study identifies that the anti-cancer molecular mechanism of GD is exerted via inhibition of angiogenesis and EVs secretion, indicating the potential of GD as a chemotherapeutic agent for breast cancer.

Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes

  • Pan, Shifeng;Chen, Yongfang;Zhang, Lin;Liu, Zhuang;Xu, Xingyu;Xing, Hua
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.763-777
    • /
    • 2022
  • Objective: Excessive lipid accumulation in adipocytes results in prevalence of obesity and metabolic syndrome. Curcumin (CUR), a naturally phenolic active ingredient, has been shown to have lipid-lowering effects. However, its underlying mechanisms have remained largely unknown. Therefore, the study aims to determine the effect of CUR on cellular lipid accumulation in porcine subcutaneous preadipocytes (PSPA) and to clarify novel mechanisms. Methods: The PSPA were cultured and treated with or without CUR. Both cell counting Kit-8 and lactate dehydrogenase release assays were used to examine cytotoxicity. Intracellular lipid contents were measured by oil-red-o staining extraction and triglyceride quantification. Apoptosis was determined by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling assay. Adipogenic and apoptosis genes were analyzed by quantitative polymerase chain reaction and Western blot. Results: The CUR dose-dependently reduced the proliferation and lipid accumulation of PSPA. Noncytotoxic doses of CUR (10 to 20 μM) significantly inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and expression of adipogenic genes peroxisome proliferation-activity receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α, sterol regulatory element-binding protein-1c, adipocyte protein-2, glucose transporter-4 as well as key lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase, while ERK1/2 activation significantly reversed CUR-reduced lipid accumulation by increasing PPAR-γ. Furthermore, compared with differentiation induced media treated cells, higher dose of CUR (30 μM) significantly decreased the expression of AKT and B-cell lymphoma-2 (BCL-2), while increased the expression of BCL-2-associated X (BAX) and the BAX/BCL-2 expression ratio, suggesting triggered apoptosis by inactivating AKT and increasing BAX/BCL-2 ratio and Caspase-3 expression. Moreover, AKT activation significantly rescued CUR inhibiting lipid accumulation via repressing apoptosis. Conclusion: These results demonstrate that CUR is capable of suppressing differentiation by inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis via decreasing AKT and subsequently increasing BAX/BCL-2 ratio and Caspase-3, suggesting that CUR provides an important method for the reduction of porcine body fat, as well as the prevention and treatment of human obesity.

Use of Near Infrared Reflectance Spectroscopy for Determination of Grain Components in Barley (보리종실 성분분석을 위한 근적외선분광광도계의 이용방법)

  • Kim, Byung-Joo;Park, Eui-Ho;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.6
    • /
    • pp.716-722
    • /
    • 1995
  • Near Infrared Reflectance Spectroscopy (NIRS) has been used as a tool for the rapid, accurate and nondestructive assay of small grain and forage quality analysis. The objective of this study was to establish the rapid, easy and accurate analysis method for major components of covered barley using NIRS system. NIRS used in this study was filter type instrument, Neotec 102. To obtain a useful calibration equation, standard regression between the data was analyzed by chemical analysis and by NIRS method. Standard errors of prediction (SEP) and simple correlations for unknown samples were calculated using obtained equation. SEPs for starch, $\beta$-glucan, protein and ash contents were 2.75%, 0.64%, 0.26% and 0.19%, respectively. The simple correlations for starch, $\beta$-glucan, protein and ash contents were 0.932, 0.588, 0.984 and 0.867, respectively. It was concluded that the NIRS method would be applicabl for the rapid determination of starch, protein and ash contents in barley grains.

  • PDF

A Study on the Effects and Mechanisms of the Combination Extract of Ephedrae Herba and Coicis Semen on Lipid Accumulation and Glucose Absorption in Non-Alcoholic Fatty Liver Disease (마황과 의이인 혼합추출물이 비알콜성 지방간 모델에서 지질 축적 및 포도당 흡수에 미치는 효과 및 기전 연구)

  • Ga-Ram Yu;Hye-Lin Jin;Dong-Woo Lim;Won-Hwan Park
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Objectives: Ephedrae herba (EH) and Coicis semen (CS) has been frequently prescribed for the treatment of obesity. However, effects of combinational extracts of these two herbs on non-alcoholic fatty liver disease are unknown. The aim of the present study was to investigate the effects of EH and CS on lipid accumulation and glucose absorption in free fatty acids (FFAs) or palmitic acid (PA)-treated HepG2 cells. Methods: Five samples of EH and CS were extracted by combination ratios (S1=0:100, S2=25:75, S3=50:50, S4=75:25, S5=100:0). Oil Red O staining was used to measure lipid accumulation in FFAs-induced steatosis cells. Intracellular triglycerides and total cholesterol levels were measured in FFAs-induced steatotic HepG2 cells. In PA-treated cells, intracellular 2-NBDG was detected using a fluorescence microplate reader and flow cytometry. Phosphorylation of key metabolism-related factors of AMP-activated protein kinase and acetyl-CoA carboxylase, expression of key lipid synthesis-related factors carnitine palmitoyltransferase 1 alpha (CPT1α), sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα) were confirmed by western blot. Results: Treatment of EH-CS combination in the FFAs-induced steatotic HepG2 cells significantly reduced lipid accumulation. As the relative ratio of Ephedrae herba increased, the lipid-lowering effects of the combination were increased. However, S1 and S5 of Ephedrae herba and Coicis semen did not significantly reduce triglycerides and total cholesterol induced by FFAs. However, the combination of Ephedrae herba and Coicis semen restored glucose absorption in PA-induced HepG2 cells. Major makers of SREBP1, PPARγ, C/EBPα, and CPT1α expression tended to decrease with EH ratio. Conclusions: The EH-CS combination has advantages over sole EH and CS extracts in improving lipid and glucose metabolism in liver steatosis models.

Studies on the Chemical Compositions of Citrus junos in Korea (한국산유자(韓國産柚子)의 화학적성분(化學的成分)에 관(關)한 연구(硏究))

  • Jung, Ji-Heun
    • Applied Biological Chemistry
    • /
    • v.17 no.1
    • /
    • pp.63-80
    • /
    • 1974
  • The chemical components of Citrus junos produced in Korea were divided into two parts; common and special components respectively. In the former the relation between the physiological effects of the plant and its ripening process was observed periodically while the latter was analyzed the ripening fruits for their effective utilization as food. The results are summarized as follows: 1. The analytical result of seasonal change showed that the rind ratio was higher than the flesh ratio and on a regional basis, the rind ratio was higher in the islands than on land areas. 2. In the experiment the moisture was increased until the third period, but afterwards it was made constant. While the content of crude fat, cellulose, ash, total acid and soluble non-nitrogen material were decreased until the third period and the cotent of cellulose and total acid were continuousely redused until the last period. In con trast with the above the content of reducing sugars was increased but the content of crude fat, cellulose, ash, crude protein and soluble non-nitrogen material were increased until last period. 3. The content of vitamin C was richer in the rind than in the flesh, in the Korean species than in the Japanese. 4. Free sugars; xylose, fructose, glucose were richer in the rind than in the flesh. 5. The content of volatile organic acids was richer in the rind than in the flesh. Among them, volatile acids, acetic acid, formic and n-valeric acid were found in the rind and formic acid, acetic acid and propionic acid were deteceed in the flesh. 6. The total content of non-volatile acids was richer in the flesh than in the rind. In the kind of non-volatile acids, citric acid,glutaric acid, malic acid, tartaric acid, oxalic acid, malonic acid, succinic acid and an unknown acid were found in the rind and citric acid, malic acid, succinic acid, oxalic acid, glutaric acid and malonic acid in the flesh. 7. Three kinds of aromatic components: D-limonene, ${\alpha}-pinene$, p-cymene and seven other kinds of unknown aromatic components were detected in neutral essential oils. Among them, D-limonene seemed to be main aromatic component in the fruits. 8. From the above results it is confirmed that both rind and flesh of the ripened fruit could be utilized for food effectively, and unripened fruits are suitable for producing citric acid, ripened fruits are also useful for producing juice.

  • PDF

IP-10 Decreases TNF-α Induced MUC5AC Expression in Human Airway Epithelial Cells: a Possible Relation with Little Sputum Production in Idiopathic Pulmonary Fibrosis (IP-10에 의한 기도상피세포에서의 TNF-α 유도 MUC5AC발현 억제: 특발성폐섬유증 환자의 적은 객담과의 연관성)

  • Kim, Seung Joon;Kang, Chun Mi;You, Moon Bin;Yoon, Hyung Kyu;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Park, Sung Hak;Song, Jeong Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.5
    • /
    • pp.347-355
    • /
    • 2008
  • Background: IPF is characterized by chronic, fibrosing inflammatory lung disease of unknown etiology. Typical symptoms of IPF are exertional dyspnea with nonproductive cough. Why patients with typical IPF have dry cough rather than productive cough, is unknown. IP-10 plays an important regulatory role in leukocyte trafficking into the lung. The present study investigated the effect of IP-10 in the pathogenesis of dry cough rather than productive cough in IPF patients. Methods: IP-10 concentration was measured by ELISA from BALF of IPF patients. To evaluate the role of IP-10 in mucin expression, the expression of the MUC5AC mucin gene was measured in NCI-H292 cells, a human pulmonary mucoepidermoid carcinoma cell line, after stimulation by TNF-${\alpha}$ with or without IP-10 pretreatment. EGFR-MAPK expression was also examined as a possible mechanism. Results: IP-10 levels were significantly higher in the BALF of IPF patients compared to healthy controls. IP-10 pretreatment reduced TNF-${\alpha}$ induced MUC5AC mucin expression by inhibiting the EGFR-MAPK signal transduction pathway in NCI-H292 cells. Conclusion: These findings suggest that little mucus production in IPF patients might be attributable to IP-10 overproduction, which inhibits the EGFR-MAPK signal transduction pathway required for MUC5AC mucin gene expression.