DOI QR코드

DOI QR Code

Anti-cancer effect of glabridin by reduction of extracellular vesicles secretion in MDA-MB-231 human breast cancer cells

유방암세포에서 세포외 소포체 분비 감소를 통한 glabridin의 항암효과

  • Choi, Sang-Hun (Department of Food Science and Nutrition, Andong National University) ;
  • Hwang, Jin-Hyeon (Department of Food Science and Nutrition, Andong National University) ;
  • Baek, Moon-Chang (Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University) ;
  • Cho, Young-Eun (Department of Food Science and Nutrition, Andong National University)
  • 최상헌 (안동대학교 식품영양학과) ;
  • 황진현 (안동대학교 식품영양학과) ;
  • 백문창 (경북대학교 의과대학 분자의학교실) ;
  • 조영은 (안동대학교 식품영양학과)
  • Received : 2022.02.11
  • Accepted : 2022.03.18
  • Published : 2022.04.30

Abstract

Purpose: Glabridin (GD) is a bio-available isoflavane isolated from the root extract of licorice (Glycyrrhiza glabra L.). It exhibits a variety of pharmacological activities such as anti-inflammatory and anti-oxidant activities. However, extracellular vesicles (EVs) secretion and the anti-cancer mechanism of action remains largely unknown. The present study investigates the anticancer effects of GD by determining the inhibition of EVs secretion in the human breast cancer cell line, MDA-MB-231. Methods: Cell viability, reactive oxygen species (ROS) production, migration, invasion rate, and vascular endothelial growth factor (VEGF) concentration were assessed in MDA-MB-231 cells treated with increasing concentrations of GD (0.1, 1, 5, 10, 20 µM). Subsequently, EV secretion and exosomal DEL-1 protein expression were evaluated to determine the anticancer effects of GD. Results: The results showed that GD significantly inhibited the cell proliferation of MDA-MB-231 cells in a dose- or time-dependent manner. Also, ROS production and apoptosis marker protein cleaved caspase-3 were significantly increased in GD-treated MDA-MB-231, compared to control. Furthermore, GD exposure resulted in significantly decreased not only migration and invasion rates but also the VEGF concentration, thereby contributing to a reduction in angiogenesis. Interestingly, the concentration and number of EVs as well as EV marker proteins, such as CD63 and TSG101, were decreased in GD-treated MDA-MB-231 cells. Markedly, extracellular matrix protein DEL-1 as angiogenesis factor was decreased in EVs from GD-treated MDA-MB-231 cells. Conclusion: This study identifies that the anti-cancer molecular mechanism of GD is exerted via inhibition of angiogenesis and EVs secretion, indicating the potential of GD as a chemotherapeutic agent for breast cancer.

본 연구에서는 인간 유방암 세포 라인인 MDA-MB-231 세포에서 GD에 의해 EVs분비 억제에 의한 항암효과를 처음으로 확인하고자 하였다. MDA-MB-231 세포에 GD를 처리하였을 때 농도 의존적으로 세포의 증식률을 억제하는 것을 MTT assay를 통해 확인할 수 있었으며, ROS 염색과 apoptosis marker 단백질인 p-JNK단백질의 증가를 통해 GD에 의한 세포의 증식 억제 효과가 세포사멸에 의한 것임을 유추할 수 있었다. 또한 wound-healing assay, 세포 침윤 및 VEGF 농도를 측정한 결과 GD가 암세포의 이동, 전이 능력을 억제하는 것을 확인하였다. Nanosight를 통해서 MDA-MB-231 세포에서 분비되는 대조군 EVs 및 GD에 의해 변화된 EVs의 사이즈를 확인하였다. 마지막으로 GD를 처리한 MDA-MB-231 세포에서 분비된 EVs보다 GD를 처리하지 않은 대조군에서 분비된 EVs의 단백질 및 particles수가 유의적으로 감소하는 것을 확인을 하였다. 그리고 GD가 MDA-MB-231 세포에서 EVs분비를 감소시키는 것을 대표적인 exosome marker인 TSG101, CD63의 발현 감소로 확인할 수 있었다. 이러한 결과로 인해 GD가 암세포의 EVs 분비를 감소시켜 암세포의 성장 및 전이를 억제하였음을 확인하였다. 본 연구는 GD가 인간 유방암 세포인 MDA-MB-231 세포의 EVs 분비를 억제하는 효과가 있음을 제시하고 있다. 따라서 GD가 유방암의 화학요법 약물로 작용할 수 있음을 시사한다.

Keywords

Acknowledgement

This work was supported by a Research Grant of Andong Nation University

References

  1. Jung KW, Won YJ, Hong S, Kong HJ, Lee ES. Prediction of cancer incidence and mortality in Korea, 2020. Cancer Res Treat 2020; 52(2): 351-358. https://doi.org/10.4143/crt.2020.203
  2. Chu SK, Seo EY, Kim WK, Kang NE. Effect of cyanidin on cell motility and invasion in MDA-MB-231 human breast cancer cells. Korean J Nutr 2008; 41(8): 711-717.
  3. Block KI, Gyllenhaal C, Tripathy D, Freels S, Mead MN, Block PB, et al. Survival impact of integrative cancer care in advanced metastatic breast cancer. Breast J 2009; 15(4): 357-366. https://doi.org/10.1111/j.1524-4741.2009.00739.x
  4. Gupta GP, Minn AJ, Kang Y, Siegel PM, Serganova I, Cordon-Cardo C, et al. Identifying site-specific metastasis genes and functions. Cold Spring Harb Symp Quant Biol 2005; 70: 149-158. https://doi.org/10.1101/sqb.2005.70.018
  5. Kwon HS, Oh SM, Kim JK. Glabridin, a functional compound of liquorice, attenuates colonic inflammation in mice with dextran sulphate sodium-induced colitis. Clin Exp Immunol 2008; 151(1): 165-173. https://doi.org/10.1111/j.1365-2249.2007.03539.x
  6. Carmeli E, Fogelman Y. Antioxidant effect of polyphenolic glabridin on LDL oxidation. Toxicol Ind Health 2009; 25(4-5): 321-324. https://doi.org/10.1177/0748233709103034
  7. Liu K, Pi F, Zhang H, Ji J, Xia S, Cui F, et al. Metabolomics analysis to evaluate the anti-inflammatory effects of polyphenols: glabridin reversed metabolism change caused by LPS in RAW 264.7 cells. J Agric Food Chem 2017; 65(29): 6070-6079. https://doi.org/10.1021/acs.jafc.7b01692
  8. Yokota T, Nishio H, Kubota Y, Mizoguchi M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res 1998; 11(6): 355-361. https://doi.org/10.1111/j.1600-0749.1998.tb00494.x
  9. Simmler C, Pauli GF, Chen SN. Phytochemistry and biological properties of glabridin. Fitoterapia 2013; 90: 160-184. https://doi.org/10.1016/j.fitote.2013.07.003
  10. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol 2018; 15(10): 617-638. https://doi.org/10.1038/s41571-018-0036-9
  11. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 2016; 30(6): 836-848. https://doi.org/10.1016/j.ccell.2016.10.009
  12. Im EJ, Lee CH, Moon PG, Rangaswamy GG, Lee B, Lee JM, et al. Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat Commun 2019; 10(1): 1387. https://doi.org/10.1038/s41467-019-09387-4
  13. Lee SJ, Lee J, Jung JH, Park HY, Moon PG, Chae YS, et al. Exosomal Del-1 as a potent diagnostic marker for breast cancer: prospective cohort study. Clin Breast Cancer 2021; 21(6): e748-e756. https://doi.org/10.1016/j.clbc.2021.02.002
  14. Doonan F, Cotter TG. Morphological assessment of apoptosis. Methods 2008; 44(3): 200-204. https://doi.org/10.1016/j.ymeth.2007.11.006
  15. Kang SW. Role of reactive oxygen species in cell death pathways. Hanyang Med Rev 2013; 33(2): 77-82. https://doi.org/10.7599/hmr.2013.33.2.77
  16. Liotta LA, Kleinerman J, Catanzaro P, Rynbrandt D. Degradation of basement membrane by murine tumor cells. J Natl Cancer Inst 1977; 58(5): 1427-1431. https://doi.org/10.1093/jnci/58.5.1427
  17. Goh PP, Sze DM, Roufogalis BD. Molecular and cellular regulators of cancer angiogenesis. Curr Cancer Drug Targets 2007; 7(8): 743-758. https://doi.org/10.2174/156800907783220462
  18. Ju J, Zhu AJ, Yuan P. Progress in targeted therapy for breast cancer. Chronic Dis Transl Med 2018; 4(3): 164-175. https://doi.org/10.1016/j.cdtm.2018.04.002