References
- Ahmed, M. R., Bychkov, E., Gurevich, V. V., Benovic, J. L. and Gurevich, E. V. (2008) Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J. Neurochem. 104, 1622-1636. https://doi.org/10.1111/j.1471-4159.2007.05104.x
- Ambros, V. (2004) The functions of animal microRNAs. Nature 431, 350-355. https://doi.org/10.1038/nature02871
- Andersen, H. H., Duroux, M. and Gazerani, P. (2014) MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol. Dis. 71, 159-168. https://doi.org/10.1016/j.nbd.2014.08.003
- Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
- Bennett, G. J. and Xie, Y. K. (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87-107. https://doi.org/10.1016/0304-3959(88)90209-6
- Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., Taccioli, C., Zanesi, N., Garzon, R., Aqeilan, R. I., Alder, H., Volinia, S., Rassenti, L., Liu, X., Liu, C. G., Kipps, T. J., Negrini, M. and Croce, C. M. (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl. Acad. Sci. U.S.A. 105, 5166-5171. https://doi.org/10.1073/pnas.0800121105
- Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. and Yaksh, T. L. (1994) Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55-63. https://doi.org/10.1016/0165-0270(94)90144-9
- Chen, W., Guo, S. and Wang, S. (2016) MicroRNA-16 alleviates inflammatory pain by targeting Ras-related protein 23 (RAB23) and inhibiting p38 MAPK activation. Med. Sci. Monit. 22, 3894-3901. https://doi.org/10.12659/MSM.897580
- Denk, F. and McMahon, S. B. (2012) Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 73, 435-444. https://doi.org/10.1016/j.neuron.2012.01.012
- Eijkelkamp, N., Heijnen, C. J., Willemen, H. L., Deumens, R., Joosten, E. A., Kleibeuker, W., den Hartog, I. J., van Velthoven, C. T., Nijboer, C., Nassar, M. A., Dorn, G. W., 2nd, Wood, J. N. and Kavelaars, A. (2010) GRK2: a novel cell-specific regulator of severity and duration of inflammatory pain. J. Neurosci. 30, 2138-2149. https://doi.org/10.1523/JNEUROSCI.5752-09.2010
- Haanpaa, M., Attal, N., Backonja, M., Baron, R., Bennett, M., Bouhassira, D., Cruccu, G., Hansson, P., Haythornthwaite, J. A., Iannetti, G. D., Jensen, T. S., Kauppila, T., Nurmikko, T. J., Rice, A. S., Rowbotham, M., Serra, J., Sommer, C., Smith, B. H. and Treede, R. D. (2011) NeuPSIG guidelines on neuropathic pain assessment. Pain 152, 14-27. https://doi.org/10.1016/j.pain.2010.07.031
- Hargreaves, K., Dubner, R., Brown, F., Flores, C. and Joris, J. (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77-88. https://doi.org/10.1016/0304-3959(88)90026-7
- Ji, L. J., Shi, J., Lu, J. M. and Huang, Q. M. (2018) MiR-150 alleviates neuropathic pain via inhibiting toll-like receptor 5. J. Cell. Biochem. 119, 1017-1026. https://doi.org/10.1002/jcb.26269
- Jiangpan, P., Qingsheng, M., Zhiwen, Y. and Tao, Z. (2016) Emerging role of microRNA in neuropathic pain. Curr. Drug Metab. 17, 336-344. https://doi.org/10.2174/1389200216666151015113400
- Kavelaars, A., Eijkelkamp, N., Willemen, H. L., Wang, H., Carbajal, A. G. and Heijnen, C. J. (2011) Microglial GRK2: a novel regulator of transition from acute to chronic pain. Brain Behav. Immun. 25, 1055-1060. https://doi.org/10.1016/j.bbi.2011.03.019
- Kleibeuker, W., Ledeboer, A., Eijkelkamp, N., Watkins, L. R., Maier, S. F., Zijlstra, J., Heijnen, C. J. and Kavelaars, A. (2007) A role for G protein-coupled receptor kinase 2 in mechanical allodynia. Eur. J. Neurosci. 25, 1696-1704. https://doi.org/10.1111/j.1460-9568.2007.05423.x
- Krol, J., Loedige, I. and Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597-610. https://doi.org/10.1038/nrg2843
- Lombardi, M. S., Kavelaars, A. and Heijnen, C. J. (2002) Role and modulation of G protein-coupled receptor signaling in inflammatory processes. Crit. Rev. Immunol. 22, 141-163.
- Lombardi, M. S., van den Tweel, E., Kavelaars, A., Groenendaal, F., van Bel, F. and Heijnen, C. J. (2004) Hypoxia/ischemia modulates G protein-coupled receptor kinase 2 and beta-arrestin-1 levels in the neonatal rat brain. Stroke 35, 981-986. https://doi.org/10.1161/01.STR.0000121644.82596.7e
- Lucas, E., Cruces-Sande, M., Briones, A. M., Salaices, M., Mayor, F., Jr., Murga, C. and Vila-Bedmar, R. (2015) Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Arch. Physiol. Biochem. 121, 163-177. https://doi.org/10.3109/13813455.2015.1107589
- Moon, H. G., Yang, J., Zheng, Y. and Jin, Y. (2014) miR-15a/16 regulates macrophage phagocytosis after bacterial infection. J. Immunol. 193, 4558-4567. https://doi.org/10.4049/jimmunol.1401372
- Nijboer, C. H., Heijnen, C. J., Willemen, H. L., Groenendaal, F., Dorn, G. W., 2nd, van Bel, F. and Kavelaars, A. (2010) Cell-specific roles of GRK2 in onset and severity of hypoxic-ischemic brain damage in neonatal mice. Brain Behav. Immun. 24, 420-426. https://doi.org/10.1016/j.bbi.2009.11.009
- O'Connor, A. B. and Dworkin, R. H. (2009) Treatment of neuropathic pain: an overview of recent guidelines. Am. J. Med. 122, S22-32. https://doi.org/10.1016/j.amjmed.2009.04.007
- Penela, P., Murga, C., Ribas, C., Salcedo, A., Jurado-Pueyo, M., Rivas, V., Aymerich, I. and Mayor, F., Jr. (2008) G protein-coupled receptor kinase 2 (GRK2) in migration and inflammation. Arch. Physiol. Biochem. 114, 195-200. https://doi.org/10.1080/13813450802181039
- Peregrin, S., Jurado-Pueyo, M., Campos, P. M., Sanz-Moreno, V., Ruiz-Gomez, A., Crespo, P., Mayor, F., Jr. and Murga, C. (2006) Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Curr. Biol. 16, 2042-2047. https://doi.org/10.1016/j.cub.2006.08.083
- Sakai, A. and Suzuki, H. (2014) Emerging roles of microRNAs in chronic pain. Neurochem. Int. 77, 58-67. https://doi.org/10.1016/j.neuint.2014.05.010
- Spinetti, G., Fortunato, O., Caporali, A., Shantikumar, S., Marchetti, M., Meloni, M., Descamps, B., Floris, I., Sangalli, E., Vono, R., Faglia, E., Specchia, C., Pintus, G., Madeddu, P. and Emanueli, C. (2013) MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ. Res. 112, 335-346. https://doi.org/10.1161/CIRCRESAHA.111.300418
- Su, S., Shao, J., Zhao, Q., Ren, X., Cai, W., Li, L., Bai, Q., Chen, X., Xu, B., Wang, J., Cao, J. and Zang, W. (2017) MiR-30b attenuates neuropathic pain by regulating voltage-gated sodium channel Nav1.3 in rats. Front. Mol. Neurosci. 10, 126. https://doi.org/10.3389/fnmol.2017.00126
- Suo, Z., Wu, M., Citron, B. A., Wong, G. T. and Festoff, B. W. (2004) Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation. J. Neurosci. 24, 3444-3452. https://doi.org/10.1523/JNEUROSCI.4856-03.2004
- Svensson, C. I., Schafers, M., Jones, T. L., Powell, H. and Sorkin, L. S. (2005) Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neurosci. Lett. 379, 209-213. https://doi.org/10.1016/j.neulet.2004.12.064
- Tsuda, M., Mizokoshi, A., Shigemoto-Mogami, Y., Koizumi, S. and Inoue, K. (2004) Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45, 89-95. https://doi.org/10.1002/glia.10308
- van Hecke, O., Austin, S. K., Khan, R. A., Smith, B. H. and Torrance, N. (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155, 654-662. https://doi.org/10.1016/j.pain.2013.11.013
- Vroon, A., Heijnen, C. J. and Kavelaars, A. (2006) GRKs and arrestins: regulators of migration and inflammation. J. Leukoc. Biol. 80, 1214-1221. https://doi.org/10.1189/jlb.0606373
- Wang, H., Heijnen, C. J., Eijkelkamp, N., Garza Carbajal, A., Schedlowski, M., Kelley, K. W., Dantzer, R. and Kavelaars, A. (2011) GRK2 in sensory neurons regulates epinephrine-induced signalling and duration of mechanical hyperalgesia. Pain 152, 1649-1658. https://doi.org/10.1016/j.pain.2011.03.010
- Willemen, H. L., Eijkelkamp, N., Wang, H., Dantzer, R., Dorn, G. W., 2nd, Kelley, K. W., Heijnen, C. J. and Kavelaars, A. (2010) Microglial/macrophage GRK2 determines duration of peripheral IL-1betainduced hyperalgesia: contribution of spinal cord CX3CR1 , p38 and IL-1 signaling. Pain 150, 550-560. https://doi.org/10.1016/j.pain.2010.06.015
- Willemen, H. L., Huo, X. J., Mao-Ying, Q. L., Zijlstra, J., Heijnen, C. J. and Kavelaars, A. (2012) MicroRNA-124 as a novel treatment for persistent hyperalgesia. J. Neuroinflammation 9, 143. https://doi.org/10.1186/1742-2094-9-143
- Woodall, M. C., Woodall, B. P., Gao, E., Yuan, A. and Koch, W. J. (2016) Cardiac fibroblast GRK2 deletion enhances contractility and remodeling following ischemia/reperfusion injury. Circ. Res. 119, 1116-1127. https://doi.org/10.1161/CIRCRESAHA.116.309538
- Yang, D., Yang, Q., Wei, X., Liu, Y., Ma, D., Li, J., Wan, Y. and Luo, Y. (2017a) The role of miR-190a-5p contributes to diabetic neuropathic pain via targeting SLC17A6. J. Pain Res. 10, 2395-2403. https://doi.org/10.2147/JPR.S133755
- Yang, X., Tang, X., Sun, P., Shi, Y., Liu, K., Hassan, S. H., Stetler, R. A., Chen, J. and Yin, K. J. (2017b) MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke 48, 1941-1947. https://doi.org/10.1161/STROKEAHA.117.017284
- Ye, E. A., Liu, L., Jiang, Y., Jan, J., Gaddipati, S., Suvas, S. and Steinle, J. J. (2016) miR-15a/16 reduces retinal leukostasis through decreased pro-inflammatory signaling. J. Neuroinflammation 13, 305. https://doi.org/10.1186/s12974-016-0771-8
- Yue, J. and Tigyi, G. (2010) Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm. Genome 21, 88-94. https://doi.org/10.1007/s00335-009-9240-3
- Zhang, F., Xiang, S., Cao, Y., Li, M., Ma, Q., Liang, H., Li, H., Ye, Y., Zhang, Y., Jiang, L., Hu, Y., Zhou, J., Wang, X., Nie, L., Liang, X., Gong, W. and Liu, Y. (2017) EIF3D promotes gallbladder cancer development by stabilizing GRK2 kinase and activating PI3K-AKT signaling pathway. Cell Death Dis. 8, e2868. https://doi.org/10.1038/cddis.2017.263
Cited by
- MicroRNA-212-3p Attenuates Neuropathic Pain via Targeting Sodium Voltage-gated Channel Alpha Subunit 3 (NaV 1.3) vol.16, pp.5, 2019, https://doi.org/10.2174/1567202616666191111104145
- TRPV1, Targeted by miR-338-3p, Induces Neuropathic Pain by Interacting with NECAB2 vol.71, pp.1, 2019, https://doi.org/10.1007/s12031-020-01626-4
- MicroRNAs: emerging driver of cancer perineural invasion vol.11, pp.1, 2021, https://doi.org/10.1186/s13578-021-00630-4