DOI QR코드

DOI QR Code

Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2

  • Li, Tao (Department of Anesthesiology, China-Japan Union Hospital, Jilin University) ;
  • Wan, Yingchun (Department of Endocrinology, China-Japan Union Hospital, Jilin University) ;
  • Sun, Lijuan (Department of Endocrinology, China-Japan Union Hospital, Jilin University) ;
  • Tao, Shoujun (Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine) ;
  • Chen, Peng (Department of Anesthesiology, China-Japan Union Hospital, Jilin University) ;
  • Liu, Caihua (Department of Anaesthesiology, The Central Hospital of Wuhan Affiliated with Tongji Medical College of Huazhong University of Science and Technology) ;
  • Wang, Ke (Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University) ;
  • Zhou, Changyu (Department of Gastroenterology, China-Japan Union Hospital, Jilin University) ;
  • Zhao, Guoqing (Department of Anesthesiology, China-Japan Union Hospital, Jilin University)
  • Received : 2018.04.30
  • Accepted : 2018.08.14
  • Published : 2019.07.01

Abstract

There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-$1{\beta}$ and tumor-necrosis factor-${\alpha}$ in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and $NF-{\kappa}B$ in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.

Keywords

References

  1. Ahmed, M. R., Bychkov, E., Gurevich, V. V., Benovic, J. L. and Gurevich, E. V. (2008) Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J. Neurochem. 104, 1622-1636. https://doi.org/10.1111/j.1471-4159.2007.05104.x
  2. Ambros, V. (2004) The functions of animal microRNAs. Nature 431, 350-355. https://doi.org/10.1038/nature02871
  3. Andersen, H. H., Duroux, M. and Gazerani, P. (2014) MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol. Dis. 71, 159-168. https://doi.org/10.1016/j.nbd.2014.08.003
  4. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  5. Bennett, G. J. and Xie, Y. K. (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87-107. https://doi.org/10.1016/0304-3959(88)90209-6
  6. Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., Taccioli, C., Zanesi, N., Garzon, R., Aqeilan, R. I., Alder, H., Volinia, S., Rassenti, L., Liu, X., Liu, C. G., Kipps, T. J., Negrini, M. and Croce, C. M. (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl. Acad. Sci. U.S.A. 105, 5166-5171. https://doi.org/10.1073/pnas.0800121105
  7. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. and Yaksh, T. L. (1994) Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55-63. https://doi.org/10.1016/0165-0270(94)90144-9
  8. Chen, W., Guo, S. and Wang, S. (2016) MicroRNA-16 alleviates inflammatory pain by targeting Ras-related protein 23 (RAB23) and inhibiting p38 MAPK activation. Med. Sci. Monit. 22, 3894-3901. https://doi.org/10.12659/MSM.897580
  9. Denk, F. and McMahon, S. B. (2012) Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 73, 435-444. https://doi.org/10.1016/j.neuron.2012.01.012
  10. Eijkelkamp, N., Heijnen, C. J., Willemen, H. L., Deumens, R., Joosten, E. A., Kleibeuker, W., den Hartog, I. J., van Velthoven, C. T., Nijboer, C., Nassar, M. A., Dorn, G. W., 2nd, Wood, J. N. and Kavelaars, A. (2010) GRK2: a novel cell-specific regulator of severity and duration of inflammatory pain. J. Neurosci. 30, 2138-2149. https://doi.org/10.1523/JNEUROSCI.5752-09.2010
  11. Haanpaa, M., Attal, N., Backonja, M., Baron, R., Bennett, M., Bouhassira, D., Cruccu, G., Hansson, P., Haythornthwaite, J. A., Iannetti, G. D., Jensen, T. S., Kauppila, T., Nurmikko, T. J., Rice, A. S., Rowbotham, M., Serra, J., Sommer, C., Smith, B. H. and Treede, R. D. (2011) NeuPSIG guidelines on neuropathic pain assessment. Pain 152, 14-27. https://doi.org/10.1016/j.pain.2010.07.031
  12. Hargreaves, K., Dubner, R., Brown, F., Flores, C. and Joris, J. (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77-88. https://doi.org/10.1016/0304-3959(88)90026-7
  13. Ji, L. J., Shi, J., Lu, J. M. and Huang, Q. M. (2018) MiR-150 alleviates neuropathic pain via inhibiting toll-like receptor 5. J. Cell. Biochem. 119, 1017-1026. https://doi.org/10.1002/jcb.26269
  14. Jiangpan, P., Qingsheng, M., Zhiwen, Y. and Tao, Z. (2016) Emerging role of microRNA in neuropathic pain. Curr. Drug Metab. 17, 336-344. https://doi.org/10.2174/1389200216666151015113400
  15. Kavelaars, A., Eijkelkamp, N., Willemen, H. L., Wang, H., Carbajal, A. G. and Heijnen, C. J. (2011) Microglial GRK2: a novel regulator of transition from acute to chronic pain. Brain Behav. Immun. 25, 1055-1060. https://doi.org/10.1016/j.bbi.2011.03.019
  16. Kleibeuker, W., Ledeboer, A., Eijkelkamp, N., Watkins, L. R., Maier, S. F., Zijlstra, J., Heijnen, C. J. and Kavelaars, A. (2007) A role for G protein-coupled receptor kinase 2 in mechanical allodynia. Eur. J. Neurosci. 25, 1696-1704. https://doi.org/10.1111/j.1460-9568.2007.05423.x
  17. Krol, J., Loedige, I. and Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597-610. https://doi.org/10.1038/nrg2843
  18. Lombardi, M. S., Kavelaars, A. and Heijnen, C. J. (2002) Role and modulation of G protein-coupled receptor signaling in inflammatory processes. Crit. Rev. Immunol. 22, 141-163.
  19. Lombardi, M. S., van den Tweel, E., Kavelaars, A., Groenendaal, F., van Bel, F. and Heijnen, C. J. (2004) Hypoxia/ischemia modulates G protein-coupled receptor kinase 2 and beta-arrestin-1 levels in the neonatal rat brain. Stroke 35, 981-986. https://doi.org/10.1161/01.STR.0000121644.82596.7e
  20. Lucas, E., Cruces-Sande, M., Briones, A. M., Salaices, M., Mayor, F., Jr., Murga, C. and Vila-Bedmar, R. (2015) Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Arch. Physiol. Biochem. 121, 163-177. https://doi.org/10.3109/13813455.2015.1107589
  21. Moon, H. G., Yang, J., Zheng, Y. and Jin, Y. (2014) miR-15a/16 regulates macrophage phagocytosis after bacterial infection. J. Immunol. 193, 4558-4567. https://doi.org/10.4049/jimmunol.1401372
  22. Nijboer, C. H., Heijnen, C. J., Willemen, H. L., Groenendaal, F., Dorn, G. W., 2nd, van Bel, F. and Kavelaars, A. (2010) Cell-specific roles of GRK2 in onset and severity of hypoxic-ischemic brain damage in neonatal mice. Brain Behav. Immun. 24, 420-426. https://doi.org/10.1016/j.bbi.2009.11.009
  23. O'Connor, A. B. and Dworkin, R. H. (2009) Treatment of neuropathic pain: an overview of recent guidelines. Am. J. Med. 122, S22-32. https://doi.org/10.1016/j.amjmed.2009.04.007
  24. Penela, P., Murga, C., Ribas, C., Salcedo, A., Jurado-Pueyo, M., Rivas, V., Aymerich, I. and Mayor, F., Jr. (2008) G protein-coupled receptor kinase 2 (GRK2) in migration and inflammation. Arch. Physiol. Biochem. 114, 195-200. https://doi.org/10.1080/13813450802181039
  25. Peregrin, S., Jurado-Pueyo, M., Campos, P. M., Sanz-Moreno, V., Ruiz-Gomez, A., Crespo, P., Mayor, F., Jr. and Murga, C. (2006) Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Curr. Biol. 16, 2042-2047. https://doi.org/10.1016/j.cub.2006.08.083
  26. Sakai, A. and Suzuki, H. (2014) Emerging roles of microRNAs in chronic pain. Neurochem. Int. 77, 58-67. https://doi.org/10.1016/j.neuint.2014.05.010
  27. Spinetti, G., Fortunato, O., Caporali, A., Shantikumar, S., Marchetti, M., Meloni, M., Descamps, B., Floris, I., Sangalli, E., Vono, R., Faglia, E., Specchia, C., Pintus, G., Madeddu, P. and Emanueli, C. (2013) MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ. Res. 112, 335-346. https://doi.org/10.1161/CIRCRESAHA.111.300418
  28. Su, S., Shao, J., Zhao, Q., Ren, X., Cai, W., Li, L., Bai, Q., Chen, X., Xu, B., Wang, J., Cao, J. and Zang, W. (2017) MiR-30b attenuates neuropathic pain by regulating voltage-gated sodium channel Nav1.3 in rats. Front. Mol. Neurosci. 10, 126. https://doi.org/10.3389/fnmol.2017.00126
  29. Suo, Z., Wu, M., Citron, B. A., Wong, G. T. and Festoff, B. W. (2004) Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation. J. Neurosci. 24, 3444-3452. https://doi.org/10.1523/JNEUROSCI.4856-03.2004
  30. Svensson, C. I., Schafers, M., Jones, T. L., Powell, H. and Sorkin, L. S. (2005) Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neurosci. Lett. 379, 209-213. https://doi.org/10.1016/j.neulet.2004.12.064
  31. Tsuda, M., Mizokoshi, A., Shigemoto-Mogami, Y., Koizumi, S. and Inoue, K. (2004) Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45, 89-95. https://doi.org/10.1002/glia.10308
  32. van Hecke, O., Austin, S. K., Khan, R. A., Smith, B. H. and Torrance, N. (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155, 654-662. https://doi.org/10.1016/j.pain.2013.11.013
  33. Vroon, A., Heijnen, C. J. and Kavelaars, A. (2006) GRKs and arrestins: regulators of migration and inflammation. J. Leukoc. Biol. 80, 1214-1221. https://doi.org/10.1189/jlb.0606373
  34. Wang, H., Heijnen, C. J., Eijkelkamp, N., Garza Carbajal, A., Schedlowski, M., Kelley, K. W., Dantzer, R. and Kavelaars, A. (2011) GRK2 in sensory neurons regulates epinephrine-induced signalling and duration of mechanical hyperalgesia. Pain 152, 1649-1658. https://doi.org/10.1016/j.pain.2011.03.010
  35. Willemen, H. L., Eijkelkamp, N., Wang, H., Dantzer, R., Dorn, G. W., 2nd, Kelley, K. W., Heijnen, C. J. and Kavelaars, A. (2010) Microglial/macrophage GRK2 determines duration of peripheral IL-1betainduced hyperalgesia: contribution of spinal cord CX3CR1 , p38 and IL-1 signaling. Pain 150, 550-560. https://doi.org/10.1016/j.pain.2010.06.015
  36. Willemen, H. L., Huo, X. J., Mao-Ying, Q. L., Zijlstra, J., Heijnen, C. J. and Kavelaars, A. (2012) MicroRNA-124 as a novel treatment for persistent hyperalgesia. J. Neuroinflammation 9, 143. https://doi.org/10.1186/1742-2094-9-143
  37. Woodall, M. C., Woodall, B. P., Gao, E., Yuan, A. and Koch, W. J. (2016) Cardiac fibroblast GRK2 deletion enhances contractility and remodeling following ischemia/reperfusion injury. Circ. Res. 119, 1116-1127. https://doi.org/10.1161/CIRCRESAHA.116.309538
  38. Yang, D., Yang, Q., Wei, X., Liu, Y., Ma, D., Li, J., Wan, Y. and Luo, Y. (2017a) The role of miR-190a-5p contributes to diabetic neuropathic pain via targeting SLC17A6. J. Pain Res. 10, 2395-2403. https://doi.org/10.2147/JPR.S133755
  39. Yang, X., Tang, X., Sun, P., Shi, Y., Liu, K., Hassan, S. H., Stetler, R. A., Chen, J. and Yin, K. J. (2017b) MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke 48, 1941-1947. https://doi.org/10.1161/STROKEAHA.117.017284
  40. Ye, E. A., Liu, L., Jiang, Y., Jan, J., Gaddipati, S., Suvas, S. and Steinle, J. J. (2016) miR-15a/16 reduces retinal leukostasis through decreased pro-inflammatory signaling. J. Neuroinflammation 13, 305. https://doi.org/10.1186/s12974-016-0771-8
  41. Yue, J. and Tigyi, G. (2010) Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm. Genome 21, 88-94. https://doi.org/10.1007/s00335-009-9240-3
  42. Zhang, F., Xiang, S., Cao, Y., Li, M., Ma, Q., Liang, H., Li, H., Ye, Y., Zhang, Y., Jiang, L., Hu, Y., Zhou, J., Wang, X., Nie, L., Liang, X., Gong, W. and Liu, Y. (2017) EIF3D promotes gallbladder cancer development by stabilizing GRK2 kinase and activating PI3K-AKT signaling pathway. Cell Death Dis. 8, e2868. https://doi.org/10.1038/cddis.2017.263

Cited by

  1. MicroRNA-212-3p Attenuates Neuropathic Pain via Targeting Sodium Voltage-gated Channel Alpha Subunit 3 (NaV 1.3) vol.16, pp.5, 2019, https://doi.org/10.2174/1567202616666191111104145
  2. TRPV1, Targeted by miR-338-3p, Induces Neuropathic Pain by Interacting with NECAB2 vol.71, pp.1, 2019, https://doi.org/10.1007/s12031-020-01626-4
  3. MicroRNAs: emerging driver of cancer perineural invasion vol.11, pp.1, 2021, https://doi.org/10.1186/s13578-021-00630-4