• Title/Summary/Keyword: Unknown protein

검색결과 628건 처리시간 0.026초

CHIP and BAP1 Act in Concert to Regulate INO80 Ubiquitination and Stability for DNA Replication

  • Seo, Hye-Ran;Jeong, Daun;Lee, Sunmi;Lee, Han-Sae;Lee, Shin-Ai;Kang, Sang Won;Kwon, Jongbum
    • Molecules and Cells
    • /
    • 제44권2호
    • /
    • pp.101-115
    • /
    • 2021
  • The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its half-life. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.

Crystal structure and functional analysis of the surE protein identify a novel phosphatase family

  • Lee, Jae-Young;Kwak, Jae-Eun;Suh, Se-Won
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.19-19
    • /
    • 2001
  • The genome sequencing has revealed a large number of proteins of unknown or little characterized functions that have been well conserved during evolution. It remains a great challenge to decipher the molecular and physiological functions of these proteins. One example of the evolutionarily conserved protein family with little understood function is the surE family.(omitted)

  • PDF

Functional Analysis of the Tomato Spotted Wilt Virus(TSWV) NSm Protein by Using Immunoblotting and Immunogold Labelling Assay

  • Choi, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권6호
    • /
    • pp.468-473
    • /
    • 1996
  • The genome of tomato spotted wilt virus (TSWV) is composed of three RNA segments, S, M, and L RNA and the 5.0 kb M RNA encodes two glycoproteins Gl, G2 and NSm protein of unknown function. In an effort to investigate the function of the NSm protein, antibody was raised against NSm fusion protein overexpressed in Escherichia coli. This antibody was used to detect the NSm protein by using western blot analysis and electron microscopic observation after immunogold labelling. For the cloning of the NSm gene, total RNA extracted from a TSWV infected plant was used for cDNA synthesis and polymerase chain reaction (PCR) instead of going through time-consuming virus purification. A protein band specifically reacting to the NSm antibody was detected from TSWV inoculated plants. The NSm protein was detected in the cell wall fraction and in pellet from low speed centrifugation when the infected plant tissue was fractionated into 4 fractions. In the immuno-electron microscopic observation, gold particles were found around the plasmodesmata of infected plant tissue. These results suggest that the NSm protein of TSWV plays some role in cell-to-cell movement of this virus.

  • PDF

Identification of differentially displayed genes from a soybean (Giycine max) cultivar resistant to a strain of Pseudomonas aeroginosa

  • Cha, Hyeon-Wook;Kang, Sang-Gu;Chang, Moo-Ung;Park, Euiho
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.72.2-73
    • /
    • 2003
  • We found a soybean (Glycine max) cultivar 561 that was strongly resistant to a virulent bacterial strain of a Pseudomonas spp. Further identification revealed that the Pseudomonas spp. was a strain of Pseudomonas aeruginosa. Furthermore we identified specific genes involved in the resistance of soybean 561 and analyzed the pattern of gene expression against the Pseudomonas infection using differential-display reverse transcription PCR (DDRT-PCR). More than 126 cDNA fragments representing mRNAs were induced within 48 hours of bacteria inoculation. Among them, 28 cDNA fragments were cloned and sequenced. Twelve differentially displayed clones with open reading frames had unknown functions. Sixteen selected cDNA clones were homologous to known genes in the other organisms. Some of the identified cDNAs were pathogenesis-related genes (PR genes) and PR-like genes. These cDNAs included a putative calmodulin-binding protein, an endo-1,3-1,4-b-D-glucanase, a b-1,3-endoglucanase, a b-1,3-exoglucanase, a phytochelatin synthetase-like gene, a thiol pretense, a cycloartenol synthase, and a putative receptor-like sorineithreonine protein kinase. Among them, we found that four genes were putative pathogenesis-related genes (PR) induced significantly by the p. aeruginosa infection. These included a calmodulin-binding protein gene, a b-1,3-endoglucanase gene, a receptor-like sorine/threonine protein kinase gene, and pS321 (unknown function). These results suggest that the differentially expressed genes may mediate the strong resistance of soybean 561 to Pseudomonas aeruoginosa.

  • PDF

텍스트마이닝과 주경로 분석을 이용한 미발견 공공 지식 추론 - 췌장암 유전자-단백질 유발사슬의 경우 - (Inferring Undiscovered Public Knowledge by Using Text Mining Analysis and Main Path Analysis: The Case of the Gene-Protein 'brings_about' Chains of Pancreatic Cancer)

  • 안혜림;송민;허고은
    • 한국비블리아학회지
    • /
    • 제26권1호
    • /
    • pp.217-231
    • /
    • 2015
  • 본 연구에서는 췌장암의 유전자-단백질 상호작용 네트워크를 구성하고, 관련 연구에서 주요하게 언급되는 유전자-단백질의 유발관계 사슬을 파악함으로써, 췌장암의 원인을 규명하는 실증적인 연구로 이어질 수 있는 미발견 공공 지식을 제공하려 하였다. 이를 위하여 텍스트마이닝과 주경로 분석을 Swanson의 ABC 모델에 적용해 중간 개념인 B를 방향성을 가진 다단계 모델로 확장하고 가장 의미 있는 경로를 도출하였다. 본 연구의 주제가 된 췌장암의 사례처럼 시작점과 끝점조차 한정할 수 없는 미발견 공공 지식 추론에서 주경로 분석은 유용한 도구가 될 수 있을 것이다.

Identification of Differentially Displayed Genes of a Pseudomonas Resistant Soybean (Glycine max)

  • Kang, Sang-Gu;Cha, Hyeon-Wook;Chang, Moo-Dng;Park, Eui-Ho
    • The Plant Pathology Journal
    • /
    • 제19권5호
    • /
    • pp.239-247
    • /
    • 2003
  • In Korea, a local soybean (Glycine max) genotype 56l. was found to be strongly resistant to a virulent bacterial strain of a Pseudomonas sp. SN239. Specific genes involved in the resistance of the soybean genotype 561 were identified and the pattern of gene expression against the Pseudomonas infection was analyzed using differential-display reverse transcription PCR (DDRT-PCR). More than 126 cDNA fragments representing mRNAs were induced within 48 hours of bacteria inoculation. Among them, 28 cDNA fragments were cloned and sequenced. Twelve differentially displayed clones with open reading frames had unknown functions. Sixteen selected cDNA clones were homologous to known genes of other organisms. Some of the identified cDNAs were pathogenesis-related (PR) genes and PR-like genes. These cDNAs included a putative calmodulin-binding protein; an endo-l,3-1,4-$\bate$-D-glucanase; a $\bate$-1,3-endoglucanase; a $\bate$-1,3-exoglucanase; a phytochelatin synthetase-like gene; a thiol protease; a cycloartenol synthase; and a putative receptor-like serine/threonine protein kinase. Among them, four genes were found to be putative PR genes induced significantly by the Pseudomonas infection. These included a calmodulin-binding protein gene, a $\bate$-1,3-endoglucanase gene, a receptor-like serine/threonine protein kinase gene, and pS321 (unknown function). These results suggest that the differentially expressed genes may mediate the strong resistance of soybean 561 to the strain SN239 of Pseudomonas sp.

Formaldehyde에 반응하는 애기장대 단백질의 분리 (Isolation of formaldehyde-responsive proteins in Arabidopsis)

  • 권미;박현진;서재현
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권4호
    • /
    • pp.52-60
    • /
    • 2007
  • 포르말린과 톨루엔 처리에 의한 애기장대의 표현형 변화 및 포르말린에 의한 단백질의 발현변화를 관찰하였다. 톨루엔의 휘발량이 포르말린보다 많음에도 불구하고 포르말린 처리구에서 애기장대의 표현형 변화가 더욱 현저한 것을 확인하였다. 포르말린에 의한 표현형의 변화가 미비한 6h 처리구에서도 애기장대 단백질의 발현에 많은 변화가 나타났으며 이러한 발현변화는 처리시간이 길어질수록 더욱 뚜렷하였다. 포르말린에 의하여 발현량이 변하는 단백질의 분자량을 automated gel electrophoresis system을 이용하여 예측한 후, 그 결과를 토대로 formaldehyde-responsive proteins을 분리하였다. 분리한 5개의 단백질은 전사수준에서 formaldehyde-dependent expression을 나타내었으며 formaldehyde-responsive proteins (FRP)으로 명명하였다. FRP5를 제외한 네 개의 단백질은 그 기능이 밝혀지지 않은 novel protein으로 식물의 방어기작에 관여하는 단백질과 높은 상동성을 나타내는 것을 알 수 있었다.

Development of Methods for Protein Extraction from Three Major Korean Fermented Soy Foods for 2-Dimensional Gel and Mass Spectrometric Analyses

  • Lim, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • 제51권3호
    • /
    • pp.88-94
    • /
    • 2008
  • Three different protein extraction methods-phenol extraction, trichloroacetic acid (TCA) precipitation, and desalting/TCA precipitation-were compared to determine the optimal reproducible high resolution 2-dimensional (2-D) electrophoresis for each chungkugjang, doenjang, and kochujang samples. The soluble proteins from Chungkugjang extracted by phenol were separated with high reproducibility and resolution, and gained 1.75- to 3-fold more protein spots on 2-D gel than those from the other methods. On the contrary, the extracted proteins from doenjang and kochujang treated by desalting/TCA precipitation method showed about 1.5- to 3.3-fold more protein spots on 2-D gel. Using the established methods, the changes in the protein profiles of the fermented soy foods were monitored during the fermentation period by 2-DE. One of the major proteins in soy, $\beta$-conglycinin $\alpha$-subuint, and some proteins with unknown functions were localized on 2-D gel as the protease-resistant proteins throughout the fermentation period of doenjang. Changes in the protein profile monitored by the established methods can provide basic information on unfolding the mechanisms of the generation of biofunctional activity in the fermented soy foods.

S. cerevisiae 단백질간 상호작용과 세포 내 위치 정보를 활용한 MAP Kinase 신호전달경로추출 및 예측을 위한 고성능 알고리즘 연구 (High performance Algorithm for extracting and redicting MAP Kinase signaling pathways based on S. cerevisiae rotein-Protein Interaction and Protein location Information)

  • 조미경;김민경;박현석
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.193-207
    • /
    • 2009
  • 세포 내에서 일어나는 단백질 신호 전달 과정은 단백질간의 상호작용을 통해 수행되고 조절된다. Yeast 상호작용 정보와 녹색형광단백질(GFP)을 이용하여 밝혀진 약 5,000여 개의 Yeast 단백질 위치정보를 이용하여 가중치를 부여하고 신호 전달경로 추출 및 예측을 위한 고성능 LocSPF 알고리즘을 최초로 제안하였다. 가중치 알고리즘에 의해 산출된 결과 중 의미 상관도가 높은 것을 채택한 후 KEGG에서 제공하는 신호전달 경로와 같은 신호전달 경로를 추출하는지 유사도 비교를 하였다. 한편 더 나아가 아직 실험을 통해 밝혀지지 않은 단백질 신호전달 경로를 예측하여 결과를 제시함으로써 본 연구를 통해서 알려지지 않은 새로운 신호전달 경로를 발견하거나 이전 경로에 참여하지 않은 단백질들을 발견할 수 있는 가능성을 제시 하였다.

Ferric Reductase Activity of the ArsH Protein from Acidithiobacillus ferrooxidans

  • Mo, Hongyu;Chen, Qian;Du, Juan;Tang, Lin;Qin, Fang;Miao, Bo;Wu, Xueling;Zeng, Jia
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권5호
    • /
    • pp.464-469
    • /
    • 2011
  • The arsH gene is one of the arsenic resistance system in bacteria and eukaryotes. The ArsH protein was annotated as a NADPH-dependent flavin mononucleotide (FMN) reductase with unknown biological function. Here we report for the first time that the ArsH protein showed high ferric reductase activity. Glu104 was an essential residue for maintaining the stability of the FMN cofactor. The ArsH protein may perform an important role for cytosolic ferric iron assimilation in vivo.