DOI QR코드

DOI QR Code

Identification of Differentially Displayed Genes of a Pseudomonas Resistant Soybean (Glycine max)

  • Published : 2003.10.01

Abstract

In Korea, a local soybean (Glycine max) genotype 56l. was found to be strongly resistant to a virulent bacterial strain of a Pseudomonas sp. SN239. Specific genes involved in the resistance of the soybean genotype 561 were identified and the pattern of gene expression against the Pseudomonas infection was analyzed using differential-display reverse transcription PCR (DDRT-PCR). More than 126 cDNA fragments representing mRNAs were induced within 48 hours of bacteria inoculation. Among them, 28 cDNA fragments were cloned and sequenced. Twelve differentially displayed clones with open reading frames had unknown functions. Sixteen selected cDNA clones were homologous to known genes of other organisms. Some of the identified cDNAs were pathogenesis-related (PR) genes and PR-like genes. These cDNAs included a putative calmodulin-binding protein; an endo-l,3-1,4-$\bate$-D-glucanase; a $\bate$-1,3-endoglucanase; a $\bate$-1,3-exoglucanase; a phytochelatin synthetase-like gene; a thiol protease; a cycloartenol synthase; and a putative receptor-like serine/threonine protein kinase. Among them, four genes were found to be putative PR genes induced significantly by the Pseudomonas infection. These included a calmodulin-binding protein gene, a $\bate$-1,3-endoglucanase gene, a receptor-like serine/threonine protein kinase gene, and pS321 (unknown function). These results suggest that the differentially expressed genes may mediate the strong resistance of soybean 561 to the strain SN239 of Pseudomonas sp.

Keywords

References

  1. Altschul, S. E, Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. BioI. 215:403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Benhamou, N. 1995. Immunocytochemistry of plant defense mechanisms induced upon microbial attack. Microsc. Res. Tech. 31:63-78 https://doi.org/10.1002/jemt.1070310106
  3. Berry, L. D. and Gould, K. L. 1997. Fission yeast diml (+) encodes a functionally conserved polypeptide essential for mitosis. J. Cell BioI. 137:1337-1354 https://doi.org/10.1083/jcb.137.6.1337
  4. Britigan, B. E. and Edeker, B. L. 1991. Pseudomonas and neutrophil products modify transferrin and lactoferrin to create conditions that favor hydroxyl radical formation. J. Clin. Invest. 88:1092-1102 https://doi.org/10.1172/JCI115408
  5. Cline, K. and Albersheim, P. 1981. Host-pathogen interactions. Plant Physiol. 68:207-220 https://doi.org/10.1104/pp.68.1.207
  6. Cook, R. J. 1998. The molecular mechanisms responsible for resistance in plant-pathogen interactions of the gene-for-gene type function more broadly than previously imagined. Proc. Natl. Acad. Sci. USA 95:9711-9712 https://doi.org/10.1073/pnas.95.17.9711
  7. Czernic, P., Visser, B., Sun, W., Savoure, A., Deslandes, L., Marco, Y., Van Montagu, M. and Verbruggen, N. 1999. Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. Plant J. 18:321-327 https://doi.org/10.1046/j.1365-313X.1999.00447.x
  8. Dong, X., Mindrinos, M., Davis, K. R. and Ausubel, E. M. 1991. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3:61-72 https://doi.org/10.1105/tpc.3.1.61
  9. Flor, H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296 https://doi.org/10.1146/annurev.py.09.090171.001423
  10. Granell, A., Marris, N., Pisabarro, A. G. and Carbonell, J. 1992. Temporal ang spatial expression of a thiolprotease gene during pea ovary senescence, and its regulation by gibberellin. Plant J. 2:907-915
  11. Haralampidis, K., Bryan, G., Qi, X., Papadopoulou, K., Bakht, S., Melton, R. and Osbourn: A. 2001. A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl. Acad. Sci. USA. 98:13431-13436 https://doi.org/10.1073/pnas.231324698
  12. Heath, M. C. 2000. Hypersensitive response-related death. Plant Mol. BioI. 44:321-34 https://doi.org/10.1023/A:1026592509060
  13. Hrmova, M., Garrett, T. P. and Fincher, O. B. 1995. Subsite affinities and disposition of catalytic amino acids in the substratebinding region of barley 1,3-beta-glucanases. Implications in plant-pathogen interactions. J. Biol. Chem. 270:14556-14563 https://doi.org/10.1074/jbc.270.24.14556
  14. Ji, C., Okinaka, Y., Takeuchi, Y., Tsurushima, T., Buzzell, R. I., Sims, J. J., Midland, S. L., Slaymaker, D., Yoshikawa, M., Yamaoka, N. and Keen, N. T. 1997. Specific Binding of the Syringolide Elicitors to a Soluble Protein Fraction from Soybean Leaves. Plant Cell 9:1425-1433 https://doi.org/10.1105/tpc.9.8.1425
  15. Ji, C., Smith-Becker, J. and Keen, N. T. 1998. Genetics of plant-pathogen interactions. Curr Opin. Biotechnol. 9:202-207 https://doi.org/10.1016/S0958-1669(98)80116-X
  16. Kang, S. G., Lee, H. J., Park, E. H. and Suh, S. G. 2002. Molecuiar cloning and characterization of cDNAs encoding heterotrimeric G protein alpha and beta subunits from potato (Solanum tuberosum L.). Mol. Cells 13:99-106
  17. Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447-463 https://doi.org/10.1146/annurev.ge.24.120190.002311
  18. Liang, P. and Pardee, A. B. 1998. Differential display. A general protocol. Mol. Biotechnol. 10:261-267 https://doi.org/10.1007/BF02740847
  19. Lieberherr, D., Wagner, U., Dubuis, P. H., Metraux, J. P. and Mauch, F. 2003. The Rapid Induction of Glutathione S-Transferases AtGSTF2 and AtGSTF6 by Avirulent Pseudomonas syringae is the Result of Combined Salicylic Acid and Ethylene Signaling. Plant Cell Physiol. 44:750-757 https://doi.org/10.1093/pcp/pcg093
  20. Meyer, M. M., Xu, R. and Matsuda, S. P. 2002. Directed evolution to generate cycloartenol synthase mutants that produce lanosterol. Org. Lett. 4:1395-1398 https://doi.org/10.1021/ol0257225
  21. Okushima, Y., Koizumi, N., Kusano, T. and Sano, H. 2000. Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol. BioI. 42:479-488 https://doi.org/10.1023/A:1006393326985
  22. Rahme, L. G., Ausubel, F. M., Cao, H., Drenkard, E., Goumnerov, B. C., Lau, G. W., Mahajan-MikIos, S., Plotnikova, J., Tan, M. W., Tsongalis, J., Walendziewicz, C. L. and Tompkins, R. G. 2000. Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA 97:8815-8821 https://doi.org/10.1073/pnas.97.16.8815
  23. Rahme, L. G., Stevens, E. J.,Wolfort, S. F., Shao, J.,Tompkins, R. G. and Ausubel, F. M. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902 https://doi.org/10.1126/science.7604262
  24. Reddy, V. S., Ali, G. S. and Reddy, A. S. 2003. Characterization of a pathogen-induced calmodulin-binding protein: mapping of four $Ca^{2+}$-dependent calmodulin-binding domains. Plant Mol. Biol. 52:143-159 https://doi.org/10.1023/A:1023993713849
  25. Reyes, M. P and Lerner, A. M. 1983. Current problems in the treatment of infective endocarditis due to Pseudomonas aeruginosa. Rev. Infect. Dis. 5:314-321 https://doi.org/10.1093/clinids/5.2.314
  26. Seehaus, K. and Tenhaken, R. 1998. Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. glycinea. Plant Mol. BioI. 38:1225-1234 https://doi.org/10.1023/A:1006036827841
  27. Shah, J., Tsui, F. and KIessig, D. F. 1997. Characterization of a salicylic acid-insensitive mutant (sail) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant Microbe Interact. 10:69-78 https://doi.org/10.1094/MPMI.1997.10.1.69
  28. Shi, Z., Buntel, C. J. and Griffin, J. H. 1994. Isolation and charac terization of the gene encoding 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 91:7370-7374 https://doi.org/10.1073/pnas.91.15.7370
  29. Slakeski, N. and Fincher, G. B. 1992. Barley (1-3,1-4)-beta-glucanase isoenzyme EI gene expression is mediated by auxin and gibberellic acid. FEBS Lett. 306:98-102 https://doi.org/10.1016/0014-5793(92)80977-O
  30. Staskawicz, B. J. 2001. Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol. 125:73-76 https://doi.org/10.1104/pp.125.1.73
  31. Vatamaniuk, O. K., Mari, S., Lu, Y-P. and Rea, P. A. 2000. Mechanism of Heavy Metal Ion Activation of Phytochelatin (PC) Synthase. Blocked Thiols are Sufficient for PC Synthase-Catalyzed Transpeptidation of Glutathione and Related Thiol Pep-tides. J. Biol. Chem. 275:31451-31459 https://doi.org/10.1074/jbc.M002997200
  32. Whalen, M. C., Innes, R. W., Bent, A. F. and Staskawicz, B. J. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulen on both Arabidopsis and soybean. Plant Cell 3:49-59 https://doi.org/10.1105/tpc.3.1.49
  33. Yang, Y, Shah, J. and Klessig, D. F. 1997. Signal perception and transduction in plant defense responses. Genes Dev. 11:1621-1639 https://doi.org/10.1101/gad.11.13.1621
  34. Yi, S. Y. and Hwang, B. K. 1998. Molecular cloning and characterization of a new basic peroxidase cDNA from soybean hypocotyls infected with Phytophthora sojae f.sp. glycines. Mol. Cells 8:556-564
  35. Zhang, J. and Zhang, L. 1996. Rapid identification of differen-tially expressed RNA transcripts in apoptotic T lymphocytes. J. Immunol. Methods 195:113-123 https://doi.org/10.1016/0022-1759(96)00105-6
  36. Zhang, Y Z., Gould, K. L., Dunbrack, R. J., Cheng, H., Roder, H. and Golemis, E. A. 1999. The evolutionarily conserved bind protein defines a novel branch of the thioredoxin fold super-family. Physiol. Genomics 1:109-118 https://doi.org/10.1152/physiolgenomics.1999.1.3.109

Cited by

  1. Evaluation of the Resistance of Mungbean Lines to Sprout Rot Caused by Pseudomonas species vol.22, pp.7, 2012, https://doi.org/10.5352/JLS.2012.22.7.987
  2. GmDim1 Gene Encodes Nucleolar Localized U5-Small Nuclear Ribonucleoprotein in Glycine max vol.65, pp.2, 2018, https://doi.org/10.1134/S1021443718020140