DOI QR코드

DOI QR Code

CHIP and BAP1 Act in Concert to Regulate INO80 Ubiquitination and Stability for DNA Replication

  • Seo, Hye-Ran (Department of Life Science, Ewha Womans University) ;
  • Jeong, Daun (Department of Life Science, Ewha Womans University) ;
  • Lee, Sunmi (Department of Life Science, Ewha Womans University) ;
  • Lee, Han-Sae (Department of Life Science, Ewha Womans University) ;
  • Lee, Shin-Ai (Department of Life Science, Ewha Womans University) ;
  • Kang, Sang Won (Department of Life Science, Ewha Womans University) ;
  • Kwon, Jongbum (Department of Life Science, Ewha Womans University)
  • Received : 2020.12.28
  • Accepted : 2021.02.14
  • Published : 2021.02.28

Abstract

The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its half-life. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.

Keywords

Acknowledgement

We thank Chin Ha Chung for providing the Myc-CHIP and Myc-CHIP-∆Ubox expression vectors. This work was supported by grants from the National Research Foundation of Korea (2018R1A2B2007128, 2019R1A5A609964, and 2019R1A6C1010020).

References

  1. Ahmed, S.F., Deb, S., Paul, I., Chatterjee, A., Mandal, T., Chatterjee, U., and Ghosh, M.K. (2012). The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J. Biol. Chem. 287, 15996-16006. https://doi.org/10.1074/jbc.M111.321083
  2. Chambers, A.L., Ormerod, G., Durley, S.C., Sing, T.L., Brown, G.W., Kent, N.A., and Downs, J.A. (2012). The INO80 chromatin remodeling complex prevents polyploidy and maintains normal chromatin structure at centromeres. Genes Dev. 26, 2590-2603. https://doi.org/10.1101/gad.199976.112
  3. Chen, Z., Barbi, J., Bu, S., Yang, H.Y., Li, Z., Gao, Y., Jinasena, D., Fu, J., Lin, F., Chen, C., et al. (2013). The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272-285. https://doi.org/10.1016/j.immuni.2013.08.006
  4. Conaway, R.C. and Conaway, J.W. (2009). The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem. Sci. 34, 71-77. https://doi.org/10.1016/j.tibs.2008.10.010
  5. Connell, P., Ballinger, C.A., Jiang, J., Wu, Y., Thompson, L.J., Hohfeld, J., and Patterson, C. (2001). The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 3, 93-96. https://doi.org/10.1038/35050618
  6. Cyr, D.M., Hohfeld, J., and Patterson, C. (2002). Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem. Sci. 27, 368-375. https://doi.org/10.1016/S0968-0004(02)02125-4
  7. Downs, J.A., Allard, S., Jobin-Robitaille, O., Javaheri, A., Auger, A., Bouchard, N., Kron, S.J., Jackson, S.P., and Cote, J. (2004). Binding of chromatinmodifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979-990. https://doi.org/10.1016/j.molcel.2004.12.003
  8. Esser, C., Scheffner, M., and Hohfeld, J. (2005). The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J. Biol. Chem. 280, 27443-27448. https://doi.org/10.1074/jbc.M501574200
  9. Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N., and Nakayama, K.I. (2001). U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem. 276, 33111-33120. https://doi.org/10.1074/jbc.M102755200
  10. Hohfeld, J., Cyr, D.M., and Patterson, C. (2001). From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep. 2, 885-890. https://doi.org/10.1093/embo-reports/kve206
  11. Hu, J., Liu, J., Chen, A., Lyu, J., Ai, G., Zeng, Q., Sun, Y., Chen, C., Wang, J., Qiu, J., et al. (2016). Ino80 promotes cervical cancer tumorigenesis by activating Nanog expression. Oncotarget 7, 72250-72262. https://doi.org/10.18632/oncotarget.12667
  12. Huang, Z., Nie, L., Xu, M., and Sun, X.H. (2004). Notch-induced E2A degradation requires CHIP and Hsc70 as novel facilitators of ubiquitination. Mol. Cell. Biol. 24, 8951-8962. https://doi.org/10.1128/MCB.24.20.8951-8962.2004
  13. Hur, S.K., Park, E.J., Han, J.E., Kim, Y.A., Kim, J.D., Kang, D., and Kwon, J. (2010). Roles of human INO80 chromatin remodeling enzyme in DNA replication and chromosome segregation suppress genome instability. Cell. Mol. Life Sci. 67, 2283-2296. https://doi.org/10.1007/s00018-010-0337-3
  14. Jiang, J., Ballinger, C.A., Wu, Y., Dai, Q., Cyr, D.M., Hohfeld, J., and Patterson, C. (2001). CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J. Biol. Chem. 276, 42938-42944. https://doi.org/10.1074/jbc.M101968200
  15. Jin, J., Cai, Y., Yao, T., Gottschalk, A.J., Florens, L., Swanson, S.K., Gutierrez, J.L., Coleman, M.K., Workman, J.L., Mushegian, A., et al. (2005). A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. J. Biol. Chem. 280, 41207-41212. https://doi.org/10.1074/jbc.M509128200
  16. Kajiro, M., Hirota, R., Nakajima, Y., Kawanowa, K., So-ma, K., Ito, I., Yamaguchi, Y., Ohie, S.H., Kobayashi, Y., Seino, Y., et al. (2009). The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat. Cell Biol. 11, 312-319. https://doi.org/10.1038/ncb1839
  17. Ko, H.S., Bailey, R., Smith, W.W., Liu, Z., Shin, J.H., Lee, Y.I., Zhang, Y.J., Jiang, H., Ross, C.A., Moore, D.J., et al. (2009). CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc. Natl. Acad. Sci. U. S. A. 106, 2897-2902. https://doi.org/10.1073/pnas.0810123106
  18. Lee, H.S., Lee, S.A., Hur, S.K., Seo, J.W., and Kwon, J. (2014). Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nat. Commun. 5, 5128. https://doi.org/10.1038/ncomms6128
  19. Lee, H.S., Seo, H.R., Lee, S.A., Choi, S., Kang, D., and Kwon, J. (2019). BAP1 promotes stalled fork restart and cell survival via INO80 in response to replication stress. Biochem. J. 476, 3053-3066. https://doi.org/10.1042/BCJ20190622
  20. Lee, J.H., Khadka, P., Baek, S.H., and Chung, I.K. (2010). CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity. J. Biol. Chem. 285, 42033-42045. https://doi.org/10.1074/jbc.M110.149831
  21. Lee, S.A., Lee, H.S., Hur, S.K., Kang, S.W., Oh, G.T., Lee, D., and Kwon, J. (2017). INO80 haploinsufficiency inhibits colon cancer tumorigenesis via replication stress-induced apoptosis. Oncotarget 8, 115041-115053. https://doi.org/10.18632/oncotarget.22984
  22. Li, X., Huang, M., Zheng, H., Wang, Y., Ren, F., Shang, Y., Zhai, Y., Irwin, D.M., Shi, Y., Chen, D., et al. (2008). CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation. J. Cell. Biol. 181, 959-972. https://doi.org/10.1083/jcb.200711044
  23. McDonough, H., Charles, P.C., Hilliard, E.G., Qian, S.B., Min, J.N., Portbury, A., Cyr, D.M., and Patterson, C. (2009). Stress-dependent Daxx-CHIP interaction suppresses the p53 apoptotic program. J. Biol. Chem. 284, 20649-20659. https://doi.org/10.1074/jbc.M109.011767
  24. Measday, V., Baetz, K., Guzzo, J., Yuen, K., Kwok, T., Sheikh, B., Ding, H., Ueta, R., Hoac, T., Cheng, B., et al. (2005). Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc. Natl. Acad. Sci. U. S. A. 102, 13956-13961. https://doi.org/10.1073/pnas.0503504102
  25. Merrick, C.J., Jackson, D., and Diffley, J.F. (2004). Visualization of altered replication dynamics after DNA damage in human cells. J. Biol. Chem. 279, 20067-20075. https://doi.org/10.1074/jbc.M400022200
  26. Min, J.N., Tian, Y., Xiao, Y., Wu, L., Li, L., and Chang, S. (2013). The mINO80 chromatin remodeling complex is required for efficient telomere replication and maintenance of genome stability. Cell Res. 23, 1396-1413. https://doi.org/10.1038/cr.2013.113
  27. Morrison, A.J., Highland, J., Krogan, N.J., Arbel-Eden, A., Greenblatt, J.F., Haber, J.E., and Shen, X. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767-775. https://doi.org/10.1016/j.cell.2004.11.037
  28. Morrison, A.J., Kim, J.A., Person, M.D., Highland, J., Xiao, J., Wehr, T.S., Hensley, S., Bao, Y., Shen, J., Collins, S.R., et al. (2007). Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses. Cell 130, 499-511. https://doi.org/10.1016/j.cell.2007.06.010
  29. Morrison, A.J. and Shen, X. (2009). Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat. Rev. Mol. Cell Biol. 10, 373-384. https://doi.org/10.1038/nrm2693
  30. Murata, S., Minami, Y., Minami, M., Chiba, T., and Tanaka, K. (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2, 1133-1138. https://doi.org/10.1093/embo-reports/kve246
  31. Ogiwara, H., Ui, A., Kawashima, S., Kugou, K., Onoda, F., Iwahashi, H., Harata, M., Ohta, K., Enomoto, T., and Seki, M. (2007). Actin-related protein Arp4 functions in kinetochore assembly. Nucleic Acids Res. 35, 3109-3117. https://doi.org/10.1093/nar/gkm161
  32. Oh, K.H., Yang, S.W., Park, J.M., Seol, J.H., Iemura, S., Natsume, T., Murata, S., Tanaka, K., Jeon, Y.J., and Chung, C.H. (2011). Control of AIF-mediated cell death by antagonistic functions of CHIP ubiquitin E3 ligase and USP2 deubiquitinating enzyme. Cell Death Differ. 18, 1326-1336. https://doi.org/10.1038/cdd.2011.3
  33. Papamichos-Chronakis, M., Krebs, J.E., and Peterson, C.L. (2006). Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 20, 2437-2449. https://doi.org/10.1101/gad.1440206
  34. Papamichos-Chronakis, M. and Peterson, C.L. (2008). The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat. Struct. Mol. Biol. 15, 338-345. https://doi.org/10.1038/nsmb.1413
  35. Papamichos-Chronakis, M., Watanabe, S., Rando, O.J., and Peterson, C.L. (2011). Global regulation of H2A.Z localization by the INO80 chromatinremodeling enzyme is essential for genome integrity. Cell 144, 200-213. https://doi.org/10.1016/j.cell.2010.12.021
  36. Park, E.J., Hur, S.K., and Kwon, J. (2010). Human INO80 chromatinremodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes. Biochem. J. 431, 179-187. https://doi.org/10.1042/BJ20100988
  37. Park, E.J., Hur, S.K., Lee, H.S., Lee, S.A., and Kwon, J. (2011). The human Ino80 binds to microtubule via the E-hook of tubulin: implications for the role in spindle assembly. Biochem. Biophys. Res. Commun. 416, 416-420. https://doi.org/10.1016/j.bbrc.2011.11.069
  38. Park, J.H., Park, E.J., Lee, H.S., Kim, S.J., Hur, S.K., Imbalzano, A.N., and Kwon, J. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J. 25, 3986-3997. https://doi.org/10.1038/sj.emboj.7601291
  39. Park, S.G., Lee, D., Seo, H.R., Lee, S.A., and Kwon, J. (2020). Cytotoxic activity of bromodomain inhibitor NVS-CECR2-1 on human cancer cells. Sci. Rep. 10, 16330. https://doi.org/10.1038/s41598-020-73500-7
  40. Paul, I., Ahmed, S.F., Bhowmik, A., Deb, S., and Ghosh, M.K. (2013). The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 32, 1284-1295. https://doi.org/10.1038/onc.2012.144
  41. Ronnebaum, S.M., Wu, Y., McDonough, H., and Patterson, C. (2013). The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination. Mol. Cell. Biol. 33, 4461-4472. https://doi.org/10.1128/MCB.00480-13
  42. Schreiber, J., Vegh, M.J., Dawitz, J., Kroon, T., Loos, M., Labonte, D., Li, K.W., Van Nierop, P., Van Diepen, M.T., De Zeeuw, C.I., et al. (2015). Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic gamma-actin levels. J. Cell Biol. 211, 569-586. https://doi.org/10.1083/jcb.201506048
  43. Seo, J., Han, S.Y., Seong, D., Han, H.J., and Song, J. (2019). Multifaceted C-terminus of HSP70-interacting protein regulates tumorigenesis via protein quality control. Arch. Pharm. Res. 42, 63-75. https://doi.org/10.1007/s12272-018-1101-8
  44. Seo, J., Lee, E.W., Shin, J., Seong, D., Nam, Y.W., Jeong, M., Lee, S.H., Lee, C., and Song, J. (2018). K6 linked polyubiquitylation of FADD by CHIP prevents death inducing signaling complex formation suppressing cell death. Oncogene 37, 4994-5006. https://doi.org/10.1038/s41388-018-0323-z
  45. Shen, X., Mizuguchi, G., Hamiche, A., and Wu, C. (2000). A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541-544. https://doi.org/10.1038/35020123
  46. Shen, X., Xiao, H., Ranallo, R., Wu, W.H., and Wu, C. (2003). Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112-114. https://doi.org/10.1126/science.1078068
  47. Shimada, K., Oma, Y., Schleker, T., Kugou, K., Ohta, K., Harata, M., and Gasser, S.M. (2008). Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr. Biol. 18, 566-575. https://doi.org/10.1016/j.cub.2008.03.049
  48. Singh, A.K. and Pati, U. (2015). CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of betasecretase. Aging Cell 14, 595-604. https://doi.org/10.1111/acel.12335
  49. Soderberg, O., Gullberg, M., Jarvius, M., Ridderstrale, K., Leuchowius, K.J., Jarvius, J., Wester, K., Hydbring, P., Bahram, F., Larsson, L.G., et al. (2006). Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995-1000. https://doi.org/10.1038/nmeth947
  50. Tsukuda, T., Fleming, A.B., Nickoloff, J.A., and Osley, M.A. (2005). Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379-383. https://doi.org/10.1038/nature04148
  51. Vassileva, I., Yanakieva, I., Peycheva, M., Gospodinov, A., and Anachkova, B. (2014). The mammalian INO80 chromatin remodeling complex is required for replication stress recovery. Nucleic Acids Res. 42, 9074-9086. https://doi.org/10.1093/nar/gku605
  52. Vincent, J.A., Kwong, T.J., and Tsukiyama, T. (2008). ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat. Struct. Mol. Biol. 15, 477-484. https://doi.org/10.1038/nsmb.1419
  53. Wang, T., Wang, W., Wang, Q., Xie, R., Landay, A., and Chen, D. (2020). The E3 ubiquitin ligase CHIP in normal cell function and in disease conditions. Ann. N. Y. Acad. Sci. 1460, 3-10. https://doi.org/10.1111/nyas.14206
  54. Werner, C.T., Mitra, S., Martin, J.A., Stewart, A.F., Lepack, A.E., Ramakrishnan, A., Gobira, P.H., Wang, Z.J., Neve, R.L., Gancarz, A.M., et al. (2019). Ubiquitin-proteasomal regulation of chromatin remodeler INO80 in the nucleus accumbens mediates persistent cocaine craving. Sci. Adv. 5, eaay0351. https://doi.org/10.1126/sciadv.aay0351
  55. Wu, S., Shi, Y., Mulligan, P., Gay, F., Landry, J., Liu, H., Lu, J., Qi, H.H., Wang, W., Nickoloff, J.A., et al. (2007). A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat. Struct. Mol. Biol. 14, 1165-1172. https://doi.org/10.1038/nsmb1332
  56. Xu, W., Marcu, M., Yuan, X., Mimnaugh, E., Patterson, C., and Neckers, L. (2002). Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl. Acad. Sci. U. S. A. 99, 12847-12852. https://doi.org/10.1073/pnas.202365899
  57. Yang, M., Wang, C., Zhu, X., Tang, S., Shi, L., Cao, X., and Chen, T. (2011). E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKC{zeta}. J. Exp. Med. 208, 2099-2112. https://doi.org/10.1084/jem.20102667
  58. Yu, E.Y., Steinberg-Neifach, O., Dandjinou, A.T., Kang, F., Morrison, A.J., Shen, X., and Lue, N.F. (2007). Regulation of telomere structure and functions by subunits of the INO80 chromatin remodeling complex. Mol. Cell. Biol. 27, 5639-5649. https://doi.org/10.1128/MCB.00418-07
  59. Zhang, M., Windheim, M., Roe, S.M., Peggie, M., Cohen, P., Prodromou, C., and Pearl, L.H. (2005). Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525-538. https://doi.org/10.1016/j.molcel.2005.09.023
  60. Zhang, S., Zhou, B., Wang, L., Li, P., Bennett, B.D., Snyder, R., Garantziotis, S., Fargo, D.C., Cox, A.D., Chen, L., et al. (2017). INO80 is required for oncogenic transcription and tumor growth in non-small cell lung cancer. Oncogene 36, 1430-1439. https://doi.org/10.1038/onc.2016.311
  61. Zhou, B., Wang, L., Zhang, S., Bennett, B.D., He, F., Zhang, Y., Xiong, C., Han, L., Diao, L., Li, P., et al. (2016). INO80 governs superenhancer-mediated oncogenic transcription and tumor growth in melanoma. Genes Dev. 30, 1440-1453. https://doi.org/10.1101/gad.277178.115
  62. Zhu, X., Zhang, J., Sun, H., Jiang, C., Dong, Y., Shan, Q., Su, S., Xie, Y., Xu, N., Lou, X., et al. (2014). Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway. J. Biol. Chem. 289, 30567-30577. https://doi.org/10.1074/jbc.M114.562868