• Title/Summary/Keyword: ubiquitin

Search Result 345, Processing Time 0.031 seconds

Ubiquitin-regulating effector proteins from Legionella

  • Jeong, Minwoo;Jeon, Hayoung;Shin, Donghyuk
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.316-322
    • /
    • 2022
  • Ubiquitin is relatively modest in size but involves almost entire cellular signaling pathways. The primary role of ubiquitin is maintaining cellular protein homeostasis. Ubiquitination regulates the fate of target proteins using the proteasome- or autophagy-mediated degradation of ubiquitinated substrates, which can be either intracellular or foreign proteins from invading pathogens. Legionella, a gram-negative intracellular pathogen, hinders the host-ubiquitin system by translocating hundreds of effector proteins into the host cell's cytoplasm. In this review, we describe the current understanding of ubiquitin machinery from Legionella. We summarize structural and biochemical differences between the host-ubiquitin system and ubiquitin-related effectors of Legionella. Some of these effectors act much like canonical host-ubiquitin machinery, whereas others have distinctive structures and accomplish non-canonical ubiquitination via novel biochemical mechanisms.

Characterization of the molten globule conformation of V26A ubiquitin by far-UV circular dichroic spectroscopy and amide hydrogen/deuterium exchange

  • Park, Soon-Ho
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • The molten globular conformation of V26A ubiquitin (valine to alanine mutation at residue 26) was studied by nuclear magnetic resonance spectroscopy in conjunction with amide hydrogen/deuterium exchange. Most of the amide protons that are involved in the native secondary structures were observed to be protected in the molten globule state with the protection factors from 1.2 to 6.7. These protection factors are about 2 to 6 orders of magnitude smaller than those of the native state. These observations indicate that V26A molten globule has native-like backbone structure with marginal stability. The comparison of amide protection factors of V26A ubiquitin molten globule state with those of initial collapsed state of the wild type ubiquitin suggests that V26A ubiquitin molten globule state is located close to unfolded state in the folding reaction coordinate. It is considered that V26A ubiquitin molten globule is useful model to study early events in protein folding reaction.

Enhanced Gene Expression by Fusion to Rice-ubiquitin in Yeast

  • Kim, Young-Mi
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Chloramphenicol acetyl CoA transferase (CAT) and angiotensin- converting enzyme inhibitory peptide (ACEI) were fused to C-terminal region of rice ubiquitin to examine the level of transcripts or enzyme activities in yeast. When two chimeric genes under an inducible Gall promoter control were transformed into Saccharomyces cerevisaie, both CAT and ACE inhibitory activities were enhanced by three to four-fold as compared to those containing no ubiquitin gene. However, the levels of transcripts of ubiquitin fused and un fused genes were not significantly different each other. Therefore, it was suggested that the expression of foreign genes was post-transcriptionally enhanced by fusion of plant ubiquitin in heterologous organisms such as yeast.

  • PDF

Enigma of Small Peptides Ubiquitin and SUMO in Plants

  • Seo, Hak Soo
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.339-343
    • /
    • 2010
  • Post-translational covalent modifications by small molecules or peptides remodel target proteins. One such modification, made by ubiquitin or small ubiquitin-related modifier (SUMO), is a rapidly expanding field in cell signaling pathways. Ubiquitin attachment controls the turnover and degradation of target proteins while SUMO conjugation regulates their activity and function. Recent studies report many examples of cross-talk between ubiquitin and SUMO pathways, indicating that the boundary is no longer clear. Here, we review recent progress concerning how ubiquitin and SUMO participate in new regulatory roles in plant cell, and how ubiquitination and sumoylation control plant growth and development.

Hydrophobic Core Variant Ubiquitin Forms a Molten Globule Conformation at Acidic pH

  • Park, Soon-Ho
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.676-683
    • /
    • 2004
  • The conformational properties of hydrophobic core variant ubiquitin (Val26 to Ala mutation) in an acidic solution were studied. The intrinsic tryptophan fluorescence emission spectrum, far-UV and near-UV circular dichroic spectra, the fluorescence emission spectrum of 8-anilinonaphthalene-1-sulfonic acid in the presence of V26A ubiquitin, and urea-induced unfolding measurements indicate this variant ubiquitin to be in the partially folded molten globule conformation in solution at pH 2. The folding kinetics from molten globule to the native state was nearly identical to those from the unfolded state to the native state. This observation suggests that the equilibrium molten globule state of hydrophobic core variant ubiquitin is an on-pathway folding intermediate.

The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi

  • Liu, Tong-Bao;Xue, Chaoyang
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • The ubiquitin-proteasome system is one of the major protein turnover mechanisms that plays important roles in the regulation of a variety of cellular functions. It is composed of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ubiquitin ligases that transfer ubiquitin to the substrates that are subjected to degradation in the 26S proteasome. The Skp1, Cullin, F-box protein (SCF) E3 ligases are the largest E3 gene family, in which the F-box protein is the key component to determine substrate specificity. Although the SCF E3 ligase and its F-box proteins have been extensively studied in the model yeast Saccharomyces cerevisiae, only limited studies have been reported on the role of F-box proteins in other fungi. Recently, a number of studies revealed that F-box proteins are required for fungal pathogenicity. In this communication, we review the current understanding of F-box proteins in pathogenic fungi.

Thermodynamic Properties of Ubiquitin Folding Intermediate (Ubiquitin 폴딩 intermediate의 열역학적 특성)

  • Park, Soon-Ho
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Thermodynamic properties of ubiquitin transient folding intermediate were studied by measuring folding kinetics in varying temperatures and denaturant concentrations. Through quantitative kinetic modeling, the equilibrium constant, hence folding free energy, between unfolded state and intermediate state in several different temperatures were calculated. Using these values, the thermodynamic parameters were estimated. The heat capacity change $({\Delta}C_p)$ upon formation of folding intermediate from unfolded state were estimated to be around 80% of the overall folding reaction, indicating that ubiquitin folding intermediate is highly compact. At room temperature, the changes of enthalpy and entropy upon formation of the intermediate state were observed to be positive. The positive enthalpy change suggests that the breaking up of the highly ordered solvent structure surrounding hydrophobic side-chain upon formation of intermediate state. This positive enthalpy was compensated for by the positive entropy change of whole system so that formation of transient intermediate has negative free energy.

The Tobacco Ubiquitin-activating Enzymes NtE1A and NtE1B Are Induced by Tobacco Mosaic Virus, Wounding and Stress Hormones

  • Takizawa, Mari;Goto, Akiko;Watanabe, Yuichiro
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.228-231
    • /
    • 2005
  • Recent characterization of several genes involved in plant defense responses suggested that ubiquitin-mediated protein degradation has a role in these responses. We isolated two cDNAs (NtUBA1 and NtUBA2) encoding ubiquitin-activating enzyme (E1) from Nicotiana tabacum cv. BY-2. The open reading frames of both encoded 1080 amino acids, corresponding to molecular masses of 120 kDa. The E1s and corresponding transcripts were upregulated by infection with tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV), and to a lesser extent by cucumber mosaic virus (CMV). Furthermore, they were also upregulated by wounding stress, and the plant hormones salicylic acid, jasmonic acid and the ethylene precursor, aminocyclopropane-1-carboxylic acid (ACC). Our findings support the idea that the ubiquitin-proteasome system plays a role in plant disease defenses.

Expression, purification and characterization of ubiquitin-specific pretense 1 for hydrolysis of ubiquitin-fused human growth hormone expressed in recombinant Escherichia coli

  • Na, Gang-In;Seo, Jin-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.554-556
    • /
    • 2003
  • This research was focused on expression, purification and characterization of ubiquitin-specific protease 1 (UBP1) expressed in recombinant Escherichia coli. Various systems were constructed by fusing polycationic fusion tails or fusion partners to the C- or N-terminus of the product protein. In particular, UBP1 containing 6 histidine residues at the N-terminal end showed best results in terms of expression level and purification efficiency. The N-terminal $6{\times}His-tagged$ UBP1 was overproduced in recombinant E. coli using high cell density cultivation technology and purified using immobilized metal affinity chromatography. The molecular weight of UBP1 was found to be 83,500 daltons. The optimum temperature and pH for the enzyme reaction when ubiquitin-human growth hormone (hGH) was used as a substrate were $40^{\circ}C$ and pH 8.0, respectively.

  • PDF

Molecular Cloning of the Bombyx Ubiquitin Holmologue Gene That Is Up-regulated Upon Infection

  • Yun, Eun-Young;Goo, Tae-Won;Hwang, Jae-Sam;Kang, Seok-Woo;Park, Soo-Jung;Kwon, O-Yu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.1
    • /
    • pp.61-64
    • /
    • 2001
  • Ubiquitin can be covalently attached to cellular proteins as a post-translational modification rind is involved in metabolic stresses, such as bent shock and immune response. We have isolated and sequenced a cDNA encoding ubiquitin from the silkworm, Bombyx mori. The insert in the clone is 533 nucleotide long with an open reading frame of 387 nucleotides that encodes a protein of 129 amino acids with a molecular weight of 14.8 kDa. The amino acid sequence shared high homology with the ubiquitins known so far, The result of dot blot hybridization showed that the B. mori ubiquitin gene is up-regulated upon f. rofi infection, suggesting that the B. mori ubiquitin plays an immune-related role.

  • PDF