• Title/Summary/Keyword: Unknown protein

Search Result 628, Processing Time 0.027 seconds

Role of Centromere Protein H and Ki67 in Relapse-free Survival of Patients after Primary Surgery for Hypopharyngeal Cancer

  • Wang, Jun-Xi;Zhang, Ying-Yao;Yu, Xue-Min;Jin, Tong;Pan, Xin-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권3호
    • /
    • pp.821-825
    • /
    • 2012
  • Purpose: Centromere protein H (CENP-H) and Ki67 are overexpressed in some malignancies, but whether they are predictors of survival after primary resection for hypopharyngeal squamous cell carcinoma (HSCC) remains unknown. Methods: We assessed immunohistochemical expression of CENP-H and Ki67 in 112 HSCC specimens collected between March 2003 and March 2005 for analysis by clinical characteristics. The Kaplan-Meier method was used to analyze relapse-free survival and logistic multivariate regression to determine risk factors of relapse-free survival. Cholecystokinin octapeptide assays and flow cytometry were used to examine cell proliferation and apoptosis after siRNA inhibition of CENP-H in HSCC cells. Results: Overall, 50 (44.6%) HSCC specimens showed upregulated CENP-H expression and 69 (61.6%) upregulated Ki67. An increased CENP-H protein level was associated with advanced cancer stage and alcohol history (P=0.012 and P=0.048, respectively) but an increased Ki67 protein level only with advanced cancer stage (P=0.021). Increased CENP-H or Ki67 were associated with short relapse-free survival (P<0.001 or P=0.009, respectively) and were independent predictors of relapse-free survival (P=0.001 and P=0.018, respectively). siRNA knockdown of CENP-H mRNA inhibited cell proliferation and promoted cancer cell apoptosis in vitro. Conclusions: Upregulated CENP-H and Ki67 levels are significantly associated with short relapse-free survival in HSCC. These factors may be predictors of a relapsing phenotype in HSSC cases.

Differentially Expressed Genes of Potentially Allelopathic Rice in Response against Barnyardgrass

  • Junaedi, Ahmad;Jung, Woo-Suk;Chung, Ill-Min;Kim, Kwang-Ho
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.231-236
    • /
    • 2007
  • Differentially expressed genes(DEG) were identified in a rice variety, Sathi, an indica type showing high allelopathic potential against barnyardgrass(Echinochloa crus-galli(L.) Beauv. var. frumentaceae). Rice plants were grown with and without barnyardgrass and total RNA was extracted from rice leaves at 45 days after seeding. DEG full-screening was performed by $GeneFishing^{TM}$ method. The differentially expressed bands were re-amplified and sequenced, then analyzed by Basic Local Alignment Search Tool(BLAST) searching for homology sequence identification. Gel electrophoresis showed nine possible genes associated with allelopathic potential in Sathi, six genes(namely DEG-1, 4, 5, 7, 8, and 9) showed higher expression, and three genes(DEG-2, 3 and 6) showed lower expression as compared to the control. cDNA sequence analysis showed that DEG-7 and DEG-9 had the same sequence. From RT PCR results, DEG-6 and DEG-7 were considered as true DEG, whereas DEG-1, 2, 3, 4, 5, and 8 were considered as putative DEG. Results from blast-n and blast-x search suggested that DEG-1 is homologous to a gene for S-adenosylmethionine synthetase, DEG-2 is homologous to a chloroplast gene for ribulose 1,5-bisphosphate carboxylase large subunit, DEG-8 is homologous to oxysterol-binding protein with an 85.7% sequence similarity, DEG-5 is homologous to histone 2B protein with a 47.9% sequence similarity, DEG-6 is homologous to nicotineamine aminotransferase with a 33.1% sequence similarity, DEG-3 has 98.8% similarity with nucleotides sequence that has 33.1% similarity with oxygen evolving complex protein in photosystem II, DEG-7 is homologous to nucleotides sequence that may relate with putative serin/threonine protein kinase and putative transposable element, and DEG-4 has 98.8% similarity with nucleotides sequence for an unknown protein.

  • PDF

한국산(韓國産) 고등(高等) 균류(菌類)의 성분(成分) 연구(硏究)(제(第)35보(報)) -애기졸각버섯의 항암(抗癌) 성분(成分)- (Studies on Constituents of Higher Fungi of Korea(XXXV) -Antitumor Components Extracted from the Carpophores and Cultured Mycelia of Laccaria laccata-)

  • 김숙희;우명식;김병각
    • 한국균학회지
    • /
    • 제10권4호
    • /
    • pp.155-163
    • /
    • 1982
  • 보다 항암력이 강하고 독성이 적은 항암물질을 얻기 위해, 경기도 수원에서 채집한 애기졸각버섯 Laccaria laccate의 자실체 및 배양균사체로 부터 다당체를 분리하여 그 화학적 조성 및 sarcoma 180에 대한 항암효과를 검토하였다. 이 물질의 구성 성분은 다당류와 단백질이었으며 다당류는 한 종류의 미확인 물질을 포함한 7종의 단당으로 구성되어 있고 단백질은 14종의 아미노산으로 구성되어 있었다. 마우스에 sarcoma 180을 이식한 후 자실체의 단백질-다당류를 1일 20mg과 50mg/kg씩을 각각 투여했을 때 75%와 65%의 높은 저지율을 나타내었으며, 배양균사체에서 추출한 단백질-다당체는 1일 20mg/kg씩 투여시 58%의 항암효과를 나타내었다.

  • PDF

Expression and pH-dependence of the Photosystem II Subunit S from Arabidopsis thaliana

  • Jeong, Mi-Suk;Hwang, Eun-Young;Jin, Gyoung-Ean;Park, So-Young;Zulfugarov, Ismayil S.;Moon, Yong-Hwan;Lee, Choon-Hwan;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1479-1484
    • /
    • 2010
  • Photosynthesis uses light energy to drive the oxidation of water at an oxygen-evolving catalytic site within photosystem II (PSII). Chlorophyll binding by the photosystem II subunit S protein, PsbS, was found to be necessary for energy-dependent quenching (qE), the major energy-dependent component of non-photochemical quenching (NPQ) in Arabidopsis thaliana. It is proposed that PsbS acts as a trigger of the conformational change that leads to the establishment of nonphotochemical quenching. However, the exact structure and function of PsbS in PSII are still unknown. Here, we clone and express the recombinant PsbS gene from Arabidopsis thaliana in E. coli and purify the resulting homogeneous protein. We used various biochemical and biophysical techniques to elucidate PsbS structure and function, including circular dichroism (CD), fluorescence, and DSC. The protein shows optimal stability at $4^{\circ}C$ and pH 7.5. The CD spectra of PsbS show that the conformational changes of the protein were strongly dependent on pH conditions. The CD curve for PsbS at pH 10.5 curve had the deepest negative peak and the peak of PsbS at pH 4.5 was the least negative. The fluorescence emission spectrum of the purified PsbS protein was also measured, and the ${\lambda}_{max}$ was found to be at 328 nm. PsbS revealed some structural changes under varying temperature and oxygen gas condition.

한국산(韓國産) 고등(高等) 균류(菌類)의 성분(成分) 연구(硏究)(제(第)37보(報)) - 뽕나무버섯의 항암(抗癌) 성분(成分) - (Studies on Constituents of the Higher Fungi of Korea(XXXVII) - Antitumor Components of Armillariella mellea -)

  • 김진숙;최응칠;김혜령;이종길;이정옥;정경수;심미자;김병각
    • 한국균학회지
    • /
    • 제11권4호
    • /
    • pp.151-157
    • /
    • 1983
  • To find antitumor components in Korean basidiomycetes, the carpophores of Armillariella mellea which were collected in Gyeong Gi Province were extracted with distilled water at $90{\sim}100^{\circ}C$ for eight hours. The hot water extract was concentrated under reduced pressure, mixed with three-fold volumes of ethanol and allowed to stand at $4^{\circ}C$ overnight. The precipitate was centrifugated and lyophilized to yield a protein-polysaccharide fraction. It was examined for antitumor activity against sarcoma 180 implanted in ICR mice. The fraction showed 75.7%, 83.9%, and 94.1% of tumor inhibition ratios at the doses of 10, 20 and 50 mg/kg/day, respectively. The chemical analysis of the fraction showed that it contained a polysaccharide(41.3%) and a protein (35.0%). The hydrolyzates of the polysaccharide moiety contained fucose (4.5%), xylose (1.1%), galactose (17.4%), glucose (55.4%), mannose(19.4%), and one unknown monosaccharide. The protein moiety contained seventeen amino acids. The protein-polysaccharide from A. mellea was administered, i.p., to mice and caused an influx of polymorphonuclear leukocytes (PMN) at $5{\sim}24$ hours which was followed by an accumulation of macrophages and disappearance of the PMN at $48{\sim}72$ hours.

  • PDF

Kinesin-1-dependent transport of the βPIX/GIT complex in neuronal cells

  • Shin, Eun-Young;Lee, Chan-Soo;Kim, Han-Byeol;Park, Jin-Hee;Oh, Kwangseok;Lee, Gun-Wu;Cho, Eun-Yul;Kim, Hyong Kyu;Kim, Eung-Gook
    • BMB Reports
    • /
    • 제54권7호
    • /
    • pp.380-385
    • /
    • 2021
  • Proper targeting of the βPAK-interacting exchange factor (βPIX)/G protein-coupled receptor kinase-interacting target protein (GIT) complex into distinct cellular compartments is essential for its diverse functions including neurite extension and synaptogenesis. However, the mechanism for translocation of this complex is still unknown. In the present study, we reported that the conventional kinesin, called kinesin-1, can transport the βPIX/GIT complex. Additionally, βPIX bind to KIF5A, a neuronal isoform of kinesin-1 heavy chain, but not KIF1 and KIF3. Mapping analysis revealed that the tail of KIF5s and LZ domain of βPIX were the respective binding domains. Silencing KIF5A or the expression of a variety of mutant forms of KIF5A inhibited βPIX targeting the neurite tips in PC12 cells. Furthermore, truncated mutants of βPIX without LZ domain did not interact with KIF5A, and were unable to target the neurite tips in PC12 cells. These results defined kinesin-1 as a motor protein of βPIX, and may provide new insights into βPIX/GIT complex-dependent neuronal pathophysiology.

The Relationship Between Green Stem Disorder and the Accumulation of Vegetative Storage Protein in Soybean

  • Zhang, Jiuning;Katsube-Tanaka, Tomoyuki;Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2019년도 추계학술대회
    • /
    • pp.22-22
    • /
    • 2019
  • Green stem disorder (GSD) of soybean (Glycine max (L.) Merr.) is characterized by delayed senescence of stems with normal pod ripening and seed maturation (Hobbs, 2006). GSD complicates harvesting of soybeans by significantly increasing the difficulty in cutting the affected plants. There is also the potential for moisture in the stems to be scattered on the seed, reducing the grade and storability of the seed. Not only the cause of GSD is yet unknown, but also GSD cannot be evaluated until maturity, therefore the method to evaluate GSD in early growth stage with high sensitivity is necessary. In previous studies, it has been reported that vegetative storage protein (VSP) accumulates and the syndrome of GSD appears in soybean after depod treatment (Fischer, 1999). Soybean VSP is a storage protein which is abundant in young sink leaves and degraded during seed fill (Wittenbach, 1982). Hence, we have established a system to quantify VSP of high sensitivity by using standard protein made by genetically transformed E. coli and specific antibody against VSP, and studied the relationship between VSP and GSD, by depod experiment and drought/excess wet experiments. The result of depod experiment with the cultivar 'Yukihomare' was the same with the previous studies, VSP accumulated much more than control and the syndrome of GSD appeared in soybean in depod treatment. Drought and excess wet had different impact on GSD. Excess wet caused GSD of the cultivar 'Tachinagaha (GSD susceptible)', while drought caused a little syndrome of GSD in the cultivar 'Touhoku 129 (GSD resistant)'. The accumulation of VSP differed between the two cultivars over time. In conclusion, the accumulation of VSP came along with the emergence of GSD. Different cultivars showed different response to drought and excess wet. In the future, it is expected that the dynamics of VSP will be elucidated in detail, leading to the development of early diagnosis technology for green stem disorder and the elucidation of mechanism of soybean GSD.

  • PDF

The effect of eleutherococcus senticosus on metabolism-associated protein expression in 3T3-L1 and C2C12 cells

  • Hashimoto, Takeshi;Okada, Yoko;Yamanaka, Atsushi;Ono, Natsuhiko;Uryu, Keisuke;Maru, Isafumi
    • 운동영양학회지
    • /
    • 제24권3호
    • /
    • pp.13-18
    • /
    • 2020
  • [Purpose] In vivo studies have demonstrated the ergogenic benefits of eleutherococcus senticosus (ES) supplementation. ES has been observed to enhance endurance capacity, improve cardiovascular function, and alter metabolic functions (e.g., increased fat utilization); however, the exact mechanisms involved remain unknown. We aimed to determine whether ES could effectively induce fat loss and improve muscle metabolic profiles through increases in lipolysis- and lipid metabolism-associated protein expression in 3T3-L1 adipocytes and C2C12 skeletal muscle cells, respectively, to uncover the direct effects of ES on adipocytes and skeletal muscle cells. [Methods] Different doses of ES extracts (0.2, 0.5, and 1.0 mg/mL) were added to cells (0.2 ES, 0.5 ES, and 1.0 ES, respectively) for 72 h and compared to the vehicle control (control). [Results] The intracellular triacylglycerol (TG) content significantly decreased (p < 0.05 for 0.2 ES, p < 0.01 for 0.5 ES and 1.0 ES) in 3T3-L1 cells. Adipose triglyceride lipase, which is involved in active lipolysis, was significantly higher in the 1.0 ES group than in the control group (p < 0.01) of 3T3-L1 adipocytes. In C2C12 cells, the mitochondrial protein voltage-dependent anion channel (VDAC) was significantly increased in the 1.0 ES group (p < 0.01). Furthermore, we found that 1.0 ES activated both 5' AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in skeletal muscle cells (p < 0.01). [Conclusion] These findings suggest that ES extracts decreased TG content, presumably by increasing lipase in adipocytes and metabolism-associated protein expression as well as mitochondrial biogenesis in muscle cells. These effects may corroborate previous in vivo findings regarding the ergogenic effects of ES supplementation.

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

Nitrogen Compounds of Korea Ginseng and their Physiological Significance

  • Park, Hoon;Cho, Byung-Goo;Lee, Mee-Kyoung
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1990년도 Proceedings of International Symposium on Korean Ginseng, 1990, Seoul, Korea
    • /
    • pp.175-189
    • /
    • 1990
  • Nitrogen compounds of Panax ginseng and their biological activities in plant and animal were reviewed. Major nitrogen compounds found in P. ginseng are free amino acids. Water solilble proteins, indouble proteins and peptides. Minor nitrogen compounds are dencichine. Glycolyroteins, amines, alkaloides, methoxy or alkyl pyrazine derivatives, free nucleosides and nucleic acid bases. 4-methyl-i-thiazoltethanol and pyroglutamic acid the contents of total nitrogen and protein in root Increased until 13 years old which was the highest age tinder investigation. Soluble protein content increased with the root weight and was higher in xylem pith than cortex-epidermis indicating the close relation with root growth. Arginine, which covered 58% of total free amino acids, may serve as storage nitrogen. Arginine seems to be changed into proline in rhizome. threonine in stem and again threonine and arginine in leaf. The greater the root weight the higher the polyamine stimulated Polyamine stimlllated the growth of root callus. Physiological roles of other minor nitrogen compounds are unknown although content is relatively high ((1.if) 6.w). Biochemical and pharmacological activities of some nitrogen compounds for animal were more investigated than physiological role there plant itself. Radiation and U.V protective function (heat stable protein). insulin-like activity in lipogenesis and livolysis (adenosine and pyroglutamic acid), depression of blood sugar content (glycopevtide). htmostatic and nellrotoxic activity (dencichine) and, sedative and hypnotic activity (4-methyl-i-thiazoleethanol) are reported. Heat stable protein increased with root age. The traditional quality criteria appear to be well in accordance with biological activities of nitrogen compounds. Chemical studies of nitrogen compounds seem relatively rare, probably due to difficulty of isolation, subsequently the investigations of biological activities are little.

  • PDF