DOI QR코드

DOI QR Code

Expression and pH-dependence of the Photosystem II Subunit S from Arabidopsis thaliana

  • Jeong, Mi-Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Hwang, Eun-Young (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jin, Gyoung-Ean (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Park, So-Young (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Zulfugarov, Ismayil S. (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Moon, Yong-Hwan (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Lee, Choon-Hwan (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jang, Se-Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • Received : 2010.03.15
  • Accepted : 2010.03.30
  • Published : 2010.06.20

Abstract

Photosynthesis uses light energy to drive the oxidation of water at an oxygen-evolving catalytic site within photosystem II (PSII). Chlorophyll binding by the photosystem II subunit S protein, PsbS, was found to be necessary for energy-dependent quenching (qE), the major energy-dependent component of non-photochemical quenching (NPQ) in Arabidopsis thaliana. It is proposed that PsbS acts as a trigger of the conformational change that leads to the establishment of nonphotochemical quenching. However, the exact structure and function of PsbS in PSII are still unknown. Here, we clone and express the recombinant PsbS gene from Arabidopsis thaliana in E. coli and purify the resulting homogeneous protein. We used various biochemical and biophysical techniques to elucidate PsbS structure and function, including circular dichroism (CD), fluorescence, and DSC. The protein shows optimal stability at $4^{\circ}C$ and pH 7.5. The CD spectra of PsbS show that the conformational changes of the protein were strongly dependent on pH conditions. The CD curve for PsbS at pH 10.5 curve had the deepest negative peak and the peak of PsbS at pH 4.5 was the least negative. The fluorescence emission spectrum of the purified PsbS protein was also measured, and the ${\lambda}_{max}$ was found to be at 328 nm. PsbS revealed some structural changes under varying temperature and oxygen gas condition.

Keywords

References

  1. Grasses, T.; Pesaresi, P.; Schiavon, F.; Varotto, C.; Salamini, F.; Jahns, P.; Leister, D. Plant Physiology and Biochemistry 2002, 40, 41-49. https://doi.org/10.1016/S0981-9428(01)01346-8
  2. Ferreira, K. N.; Iverson, T. M.; Maghlaoui, K.; Barber, J.; Iwata, S. Science 2004, 303, 1831-1838. https://doi.org/10.1126/science.1093087
  3. Niyogi, K. K.; Li, X-P.; Rosenberg, V.; Jung, H. S. Journal of Experimental Botany 2005, 56, 375-382. https://doi.org/10.1093/jxb/eri056
  4. Horton, P.; Ruban, A. V.; Walters, R. G. Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 1996, 47, 655-684. https://doi.org/10.1146/annurev.arplant.47.1.655
  5. Niyogi, K. K. Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 1999, 50, 333-359. https://doi.org/10.1146/annurev.arplant.50.1.333
  6. Li, X-P.; Phippard, A.; Pasari, J.; Niyogi, K. K. Functional Plant Biology 2002, 29, 1131-1139. https://doi.org/10.1071/FP02065
  7. Bergantino, E.; Segalla, A.; Brunetta, A.; Teardo, E.; Rigoni, F.; Giacometti, G. M.; Szabo' I. Proceedings of the National Academy of Sciences USA 2003, 100, 15265-15270. https://doi.org/10.1073/pnas.2533072100
  8. Li, X-P.; Müller Moule, P.; Gilmore, A. M.; Niyogi, K. K. Proceedings of the National Academy of Sciences USA 2002, 99, 15222-15227. https://doi.org/10.1073/pnas.232447699
  9. Li, X-P.; Bjorkman, O.; Shih, C.; Grossman, A. R.; Rosenquist, M.; Jansson, S.; Niyogi, K. K. Nature 2000, 403, 391-395. https://doi.org/10.1038/35000131
  10. Horton, P.; Ruban, A. V.; Wentworth, M. Philosophical Transactions of the Royal Society London B 2000, 355, 1361-1370. https://doi.org/10.1098/rstb.2000.0698
  11. Gerald, B. (1997), CD spectroscopy Deconvolution, version 2.1.
  12. Bergatino, E.; Segalla, A.; Brunetta, A.; Teardo, E.; Rigoni, F.; Giacometti, G. M.; Szabo, I. Proceedings of the National Academy of Sciences USA 2003, 100, 15265-15270. https://doi.org/10.1073/pnas.2533072100
  13. Ghaemmaghami, S.; Oas, T. G. Nature Structural Biology 2001, 8, 879-882. https://doi.org/10.1038/nsb1001-879
  14. Gorziglia, M.; Larrea, C.; Liprandi, F.; Esparza, J. The Journal of General Virology 1985, 66, 1889-1900. https://doi.org/10.1099/0022-1317-66-9-1889
  15. Haripal, P. K.; Raval, H. K.; Raval, M. R.; Rawal, R. M.; Biswal, B.; Biswal, U. C. Journal of Molecular Modeling 2006, 12, 847-853. https://doi.org/10.1007/s00894-006-0103-5
  16. Hong, J.; Jeong, M. S.; Kim, J. H.; Kim, B. G.; Holbrook, S. R.; Jang, S. B. Bulletin of the Korean Chemical Society 2008, 29, 381-388. https://doi.org/10.5012/bkcs.2008.29.2.381
  17. Ha, J. H.; Jeong, M. S.; Jo, W.; Jeong, M.; Jang, S. B. Bulletin of the Korean Chemical Society 2010, 2, 275-280.

Cited by

  1. Production of superoxide from Photosystem II in a rice (Oryza sativaL.) mutant lacking PsbS vol.14, pp.1, 2014, https://doi.org/10.1186/s12870-014-0242-2