• Title/Summary/Keyword: University Section

Search Result 8,710, Processing Time 0.033 seconds

A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM (FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구)

  • Cha, Cheon-Seok;Kim, Young-Nam;Yang, In-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

Seismic performance of a novel bolt-and-welded connection of box-section beam and box-section column

  • Linfeng Lu;Songlin Ding;Yuzhou Liu;Zhaojia Chen;Zhongpeng Li
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.375-382
    • /
    • 2023
  • The H-shaped steel beam is popular due to its ease of manufacturing and connection to the column. This profile, which is used as a shallow beam, needs the high weak-axis bending stiffness and torsional stiffness to meet the overall stability. Achieving the local beam flange stability, bearing capacity, bending stiffness, and torsional requirements need a great thickness and width of the beam flange, which causes, which will cause more uneconomical structural design. So, the box-section beam is the ideal alternative. However, the current design specifications do not have design rules for the bolt-and-welded connection of the box-section beam and box-section column. The paper proposes a novel bolt-and-welded connection of the box-section beams and box-section columns based on a high-rise structural design scheme. Three connection models, BASE, WBF, and RBS, are analyzed under cyclic loading in ABAQUS software. The failure modes, hysteresis response, bearing capacity, ductility, plastic rotation angle, energy dissipation, and stiffness degradation of all models are determined and compared. Compared with the other two models, the model WBF exhibited excellent seismic performance, ductility, and plastic rotation ability. Finally, model WBF was chosen as the connection scheme used in the project design.

A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE THICKNESS OF TOOTH STRUCTURE PENETRATED BY LIGHT AND APPLIED LIGHT CURING TIME (조사광이 통과하는 치질의 두께와 광조사시간에 따른 광중합형 복합레진의 중합률에 관한 연구)

  • Hwang, Kee-Hwan;Jang, In-Ho;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.1
    • /
    • pp.16-23
    • /
    • 2002
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc depend on the degree of conversion of the resin components. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the thickness of tooth structure penetrated by light and applied light curing time. The coronal portions of extracted human teeth (one anterior tooth, three posterior tooth) was embedded by pink denture material. the mounted teeth were cut into three illumination sections (1mm thickness enamel section, 1mm thickness dentin section, 2mm thicknes dentin section) and one backing section with cutting wheel. Thin resin films were made by using 6kg pressure between slide glass during 5 minutes Thin resin film was light cured on coupled illumination section during 40sec, 80sec and 120sec. each illumination section was coupled as follows; no tooth structure(X), ename section(E), enamel section + 1mm dentin section(ED1), enamel section + 2mm dentin section(ED2), enamel section + 1mm dentin section + 2mm dentin section(EDD). To simulate the clinical situation more closely, thin resin films was cured against a backing section of tooth structure. The degree of conversion of carbon double bonds to single bonds in the resin films were examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows ; 1 As curing time was increased, conversion rate was increased and as tooth thickness which was penetrated by curing light was increased, conversion rate was decreased. 2. At all tooth thickness groups, conversion rate between 80sec and 120sec was not significantly increased(P>0.05). 3. At 40sec group and 80sec, conversion rate between no tooth structure(X) group and 1mm enamel section(E) group was not significantly decreased(P>0.05). 4. At 80sec group and 120sec, conversion rate between 1mm enamel section(E) group and 1mm enamel section + 1mm dentin section(ED1) group was not significantly decreased(P>0.05).

Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

  • Sun, Yanguo;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.565-587
    • /
    • 2013
  • Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan's semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.

Predicting drying shrinkage of steel reinforced concrete columns with enclosed section steels

  • Jie Wu;Xiao Wei;Xiaoqun Luo
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.539-550
    • /
    • 2023
  • Owing to the obstruction of section steel on the moisture diffusion in concrete, the existing shrinkage prediction models overestimate the time-dependent deformation of steel reinforced concrete (SRC) columns, particularly for the SRC columns with enclosed section steels. To solve this issue, this study deals with analytical and experimental studies on the drying shrinkage for this type of column. First, an effective method for predicting the drying shrinkage of concrete based on finite element model is introduced and two crucial parameters for simulation of humidity field are determined. Then, the drying shrinkage of SRC columns with enclosed section steels is investigated and two modified parameters, which depend on the ambient relative humidity and the ratio of section steel size to column size, are introduced to the B3 model. Finally, an experiment on the shrinkage deformation of SRC columns with enclosed section steels is conducted. Comparing the predicted results with the experimental ones, it demonstrates that the modified B3 model is quite reasonable.

STABILITY OF ISOMETRIES ON RESTRICTED DOMAINS

  • Jung, Soon-Mo;Kim, Byung-Bae
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.125-137
    • /
    • 2000
  • In the present paper, the classical results of the stability of isometries obtained by some authors will be generalized; More precisely, the stability of isometries on restricted (unbounded or bounded) domains will be investigated.

  • PDF

Natural Frequencies of Beams with Step Change in Cross-Section

  • Kim, Yong-Cheul;Nam, Alexander-V.
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.46-51
    • /
    • 2004
  • Natural frequencies of the transverse vibration of beams with step change in cross-section are obtained by using the asymptotic closed form solution. This closed form solution is found by using WKB method under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is found to be still very accurate even in the case of large variation in cross-section and tension. Therefore, this result can be easily applied to many engineering problems.