• Title/Summary/Keyword: Uniform Temperature

Search Result 1,836, Processing Time 0.022 seconds

Preparation of SiC-Al alloy Composite by Pressureless Powder Packing Forming Method (분말 충전 성형법을 이용한 SiC-Al Alloy 복합체의 제조)

  • 박정현;송준광;백승수;염강섭;강민수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.343-350
    • /
    • 1997
  • To fabricate the ceramic/metal(SiC/ Al alloy) composite, SiC preform was prepared by Pressureless Powder Packing Forming Method and 6061 Al alloy was infiltrated into the preform. Uniform compact having an average pore size of 10 ${\mu}{\textrm}{m}$ and narrow pore size distribution was prepared. Phenolic resin solution(40 wt%) was penetrated into the SiC compact, and then the compact was preheated at the temperature of 120$0^{\circ}C$. The pore size distribution and the microstructure of the preform were not changed by preheating. An uniform microstructure without any crack in the preform was obtained in SiC-Al alloy composite. The infiltration of 6061. Al alloy into the preform began at the temperature of 130$0^{\circ}C$ and the amount of infiltration increased in proportion to the infiltration temperature and the soaking time. The increasement rate of the infiltration amount decreased after 3 h. As a result of the infiltration at 140$0^{\circ}C$ for 4 h, Al alloy was well distributed in the interparticle channels and the relative density of the composite was above 98%. The strength and the fracture toughness of the composite were 303 MPa and 21.65 MPam1/2, respectively.

  • PDF

Performance Predictions of the Planar-type Solid Oxide Fuel Cell with Computational Flow Analysis (II) - Non-isothermal Model - (유동 해석을 이용한 평판형 고체 산화물 연료전지의 성능 특성 분석 (II) - 비등온 모델 -)

  • Hyun, Hee-Chul;Sohn, Jeong L.;Lee, Joon-Sik;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.963-972
    • /
    • 2003
  • Performance characteristics of the planar-type solid oxide fuel cell (SOFC) are investigated by the analysis of flow fields coupled with heat and mass transfer phenomena in anode and cathode channels. For these purposes, performance analysis of the SOFC is conducted based on electrochemical reaction phenomena in electrodes and electrolyte coupled with flow fields in anode and cathode channels. In the present study, the isothermal model adopted in the previous paper prepared by the same authors is extended to the non-isothermal model by solving energy equation additionally with momentum and mass transfer equations using CFD technique. It is found that the difference between isothermal and non-isothermal models come from non-uniform temperature distribution along anode and cathode electrodes by solving energy equation in non-isothermal model. Non-uniform temperature distribution in non-isothermal model contributes to the increase of average temperature of the fuel cell and influences its performance characteristics.

On Thermal and State-of-Charge Balancing using Cascaded Multi-level Converters

  • Altaf, Faisal;Johannesson, Lars;Egardt, Bo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.569-583
    • /
    • 2013
  • In this study, the simultaneous use of a multi-level converter (MLC) as a DC-motor drive and as an active battery cell balancer is investigated. MLCs allow each battery cell in a battery pack to be independently switched on and off, thereby enabling the potential non-uniform use of battery cells. By exploiting this property and the brake regeneration phases in the drive cycle, MLCs can balance both the state of charge (SoC) and temperature differences between cells, which are two known causes of battery wear, even without reciprocating the coolant flow inside the pack. The optimal control policy (OP) that considers both battery pack temperature and SoC dynamics is studied in detail based on the assumption that information on the state of each cell, the schedule of reciprocating air flow and the future driving profile are perfectly known. Results show that OP provides significant reductions in temperature and in SoC deviations compared with the uniform use of all cells even with uni-directional coolant flow. Thus, reciprocating coolant flow is a redundant function for a MLC-based cell balancer. A specific contribution of this paper is the derivation of a state-space electro-thermal model of a battery submodule for both uni-directional and reciprocating coolant flows under the switching action of MLC, resulting in OP being derived by the solution of a convex optimization problem.

Design of integral abutment bridges for combined thermal and seismic loads

  • Far, Narges Easazadeh;Maleki, Shervin;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.415-430
    • /
    • 2015
  • Integral abutment bridges have many advantages over bridges with expansion joints in terms of economy and maintenance costs. However, in the design of abutments of integral bridges temperature loads play a crucial role. In addition, seismic loads are readily transferred to the substructure and affect the design of these components significantly. Currently, the European and American bridge design codes consider these two load cases separately in their recommended design load combinations. In this paper, the importance and necessity of combining the thermal and seismic loads is investigated for integral bridges. A 2D finite element combined pile-soil-structure interactive model is used in this evaluation. Nonlinear behavior is assumed for near field soil behind the abutments. The soil around the piles is modeled by nonlinear springs based on p-y curves. The uniform temperature changes occurring at the time of some significant earthquakes around the world are gathered and applied simultaneously with the corresponding earthquake time history ground motions. By comparing the results of these analyses to prescribed AASHTO LRFD load combinations it is observed that pile forces and abutment stresses are affected by this new load combination. This effect is more severe for contraction mode which is caused by negative uniform temperature changes.

Fabrication of the Solution-Derived BiAlO Thin Film by Using Brush Coating Process for Liquid Crystal Device (브러쉬 코팅 공정을 이용한 용액 기반 BiAlO 박막의 제작과 액정 소자에의 응용)

  • Lee, Ju Hwan;Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.321-326
    • /
    • 2021
  • We fabricated BiAlO thin film by a solution process with a brush coating to be used as liquid crystal (LC) alignment layer. Solution-processed BiAlO was coated on the glass substrate by brush process. Prepared thin films were annealed at different temperatures of 80℃, 180℃, and 280℃. To verify whether the BiAlO film was formed properly, X-ray photoelectron spectroscopy analysis was performed on Bi and Al. Using a crystal rotation method by polarized optical microscopy, LC alignment state was evaluated. At the annealing temperature of 280℃, the uniform homogenous LC alignment was achieved. To reveal the mechanism of LC alignment by brush coating, field emission scanning electron microscope was used. Through this analysis, spin-coated and brush coated film surface were compared. It was revealed that physical anisotropy was induced by brush coating at a high annealing temperature. Particles were aligned in one direction along which brush coating was made, resulting in a physical anisotropy that affects a uniform LC alignment. Therefore, it was confirmed that brush coating combined with BiAlO thin film annealed at high temperature has a significant potential for LC alignment.

An Experimental Study of the Turbulent Swirling Flow and Heat Transfer Downstream of an Abrupt Expansion in a Circulat Pipe with Uniform Heat Flux (급확대관내에서 류유선회유동의 열전달에 관한 연구)

  • 권기린;허종철
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.138-152
    • /
    • 1996
  • Many studies of heat transfer on the swirling flow or unswirled flow in a abrupt pipe expansion are widely carried out. The mechanism is not fully found evidently due to the instabilities of flow in a sudden change of the shape and appearance of turbulent shear layers in a recirculation region and secondary vortex near the corner. The purpose of this study is to obtain data through an experimental study of the swirling flow and heat transfer downstream of an abrupt expansion in a circular pipe with uniform heat flux. Experiments were carried out for the turbulent flow nd heat transfer downstream of an abrupt circular pipe expansion. The uniform heat flux condition was imposed to the downstream of the abrupt expansion by using an electrically heated pipe. Experimental data are presented for local heat transfer rates and local axial velocities in the tube downstream of an abrupt 3:1 & 2:1 expansion. Air was used as the working fluid in the upstream tube, the Reynolds number was varied from 60, 00 to 120, 000 and the swirl number range (based on the swirl chamber geometry, i.e. L/d ratio) in which the experiments were conducted were L/d=0, 8 and 16. Axial velocity increased rapidly at r/R=0.35 in the abrupt concentric expansion turbulent flow through the test tube in unswirled flow. It showed that with increasing axial distance the highest axial velocities move toward the tube wall in the case of the swirling flow abrupt expansion. A uniform wall heat flux boundary condition was employed, which resulted in wall-to-bulk temperatures ranging from 24.deg. C to 71.deg. C. In swirling flow, the wall temperature showed a greater increase at L/d=16 than any other L/d. The bulk temperature showed a minimum value at the pipe inlet, it also exhibited a linear increase with axial distance along the pipe. As swirl intensity increased, the location of peak Nu numbers was observed to shift from 4 to 1 step heights downstream of the expansion. This upstream movement of the maximum Nusselt number was accompanied by an increase in its magnitude from 2.2 to 8.8 times larger than fully developed tube flow values.

  • PDF

Temperature and Property Control of High Strength Steel in Hot Strip Mills (열간압연 고강도강의 온도 및 재질제어)

  • Park, Cheol-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.817-823
    • /
    • 2011
  • This paper proposes a cooling stop temperature control(CST) and a phase transformation control(PTR) which aim at obtaining the uniform temperature and quality along the longitudinal direction of the high strength steel on the run-out table(ROT) process. The problems of the temperature control are analyzed for the conventional steel and the new control concepts are derived from a time-temperature transformation(TTT) diagram. The proposed control technologies are verified from the simulation results under the temperature prediction model by the heat transfer governing equation, and the temperature estimation simulator. It is shown through the field test of the hot strip mills that the phase transformation ratio of the high strength steel is considerably improved by the proposed temperature controls.

Study on Design of high Efficient Cooling System for Low Temperature Furnace in Semiconductor Processing (반도체 공정용 저온 열처리로의 고효율 냉각시스템 설계에 관한 연구)

  • Jeoung, Du-Won;Suh, Ma-Son;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.71-76
    • /
    • 2010
  • According to recent changes in industry for semiconductor devices, a low-temperature treatment has become a necessity. These changes relate to size refinement and the development of new materials. While variation in cooling efficiency does not affect the yield when using a high-temperature treatment, uniform cooling efficiency is necessary avoid "inconsistencies/bends" in low temperature treatments. However it is difficult to increase temperature stabilization in low temperature treatments. In this paper, using CFD (Computer Fluid Dynamics), we analyze and manipulate the design and input of the low-temperature system to attempt to control for temperature variations within the quartz tube, of which airflow appears to be a predominant factor. This simulation includes variable inputs such as airflow rate, head pressure, and design manipulations in the S.C.U. (Super Cooling Unit).

Low Temperature Test of HWR Cryomodule

  • Kim, Heetae;Kim, Youngkwon;Lee, Min Ki;Park, Gunn-Tae;Kim, Wookang
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.47-50
    • /
    • 2016
  • Low temperature test for half-wave resonator (HWR) cryomodule is performed at the superfluid helium temperature of 2 K. The effective temperature is defined for non-uniform temperature distribution. Helium leak detection techniques are introduced for cryogenic system. Experimental set up is shown to make the low temperature test for the HWR cryomodule. The cooldown procedure of the HWR cryomodule is shown from room temperature to 2 K. The cryomodules is precooled with liquid nitrogen and then liquid helium is supplied to the helium reservoirs and cavities. The pressure of cavity and chamber are monitored as a function of time. The vacuum pressure of the cryomodule is not increased at 2 K, which shows leak-tight in the superfluid helium environment. Static heat load is also measured for the cryomodule at 2.5 K.

Optimal Design Method of the Cooling Channel for Manufacturing the Hot Stamped Component with Uniform Strength and Application to V-bending Process (균일 강도 핫스템핑 부품의 제조를 위한 냉각채널 최적 설계 및 V-벤딩 공정에의 적용)

  • Lim, Woo-Seung;Choi, Hong-Seok;Nam, Ki-Ju;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.63-72
    • /
    • 2011
  • In recent years, hot-stamped components are more increasingly used in the automotive industry in order to reduce weight and to improve the strength of vehicles. In hot stamping process, blank is hot formed and press hardened in a tool. However, in hot stamping without cooling channel, temperature of the tool increases gradually in mass production thus cannot meet the critical cooling rate to obtain high strength over 1500MPa. Warpage occurs in the hot stamped component due to non-uniform stress state caused by unbalanced cooling. Therefore, tools should be uniformly as well as rapidly cooled down by the coolant which flows through cooling channel. In this paper, optimal design method of cooling channel to obtain uniform and high strength of the component is proposed. Optimized cooling channel is applied to the hot press V-bending process. As a result of measuring strength, hardness and microstructure of the hot formed parts, it is known that the design methodology of cooling channel is effective to the hot stamping process.