• Title/Summary/Keyword: Uniform Stress

Search Result 716, Processing Time 0.023 seconds

On the Breeding of “CSR18${\times}$CSR19”- A Robust Bivoltine Hybrid of Silkworm, Bombyx mori L. for the Tropics

  • Kumar, N.Suresh;Basavaraja, H.K.;Kumar, C.M.Kishor;Reddy, N.Mal;Datta, R.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.2
    • /
    • pp.153-162
    • /
    • 2002
  • Earlier breeding experiments undertaken at Central Sericultural Research and Training Institute, Mysore, India since a decade had resulted in the development of many productive and qualitatively superior bivoltine hybrids. However, the hot climatic conditions of tropics prevailing particularly in summer are not conducive to rear these high yielding bivoltine hybrids. This has necessitated breeding of compatible bivoltine hybrids for year-round rearing. Accordingly, the Japanese hybrid, B2Ol ${\times}$ BCS12 which was found to be tolerant to high temperature was used as breeding resource material. Following hybridization and selection rearing of silkworms was taken up in SERICATRON (Environmental chamber with precise and automatic control facilities for uniform maintenance of temperature and humidity) at high temperature of $36{\times}1^{\circ}C$ and 85${\times}$5% RH in fifth instar and the control batches at $25{\times}1^{\circ}C$ and 65{\times}$5% RH. Directional selection was resorted to the batches reared at 36$\pm$1$^{\circ}C$ till F$_{5}$ keeping pupation rate as important selection criteria. From $F_{2}% onwards the experiment was modified in such a way as to conduct normal rearing every alternate generation to regain the lost vitality due to continuous exposure to high temperature and high humidity stress. At $F_{2}$ , Oval and dumb-bell cocoons were separated out and designated as CSR18 and CSR19, respectively. By utilizing these lines at $F_{12}$, the hybrid CSR18$\times$CSR19 was prepared and studied for the thermotolerance by subjecting to stress condition at high temperature of 36$\pm$1$^{\circ}C$ and 85$\pm$5% RH in fifth instar and the control batches at $25{\times}1^{\circ}C$ and 65${\times}$5% RH. The better performance of CSR18${\times}$CSR19 (survival > 88%) at $36{\times}1^{\circ}C$ clearly indicates the general superiority of CSR18${\times}$CSR19 with regard to high temperature tolerance over the productive hybrids and CSR18$\times$CSR19 can perform well in varied agro-climatic conditions of the tropics with optimum qualitative and quantitative characteristics.s.

The Quantitative Estimation of Erosion Rate Parameters for Cohesive Sediments from Keum Estuary (금강 하구역 점착성 퇴적물에 대한 침식률 매개변수의 정량적 산정)

  • Ryu, Hong-Ryul;Lee, Hyun-Seung;Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.283-293
    • /
    • 2006
  • The purpose of this study is to quantitatively estimate the erosional properties for cohesive sediments on Keum Estuary. Then the spatial variation was evaluated, through analyzing and comparing the seasonal variation of the erosional properties in Keum Estuary with that of the erosional properties in the other sites. As erosional properties of cohesive sediments are also influenced largely by basic physico-chemical property of cohesive sediments themselves, the impact that the basic physico-chemical property has on the erosional properties is analyzed in this study. Erosional tests are performed under the condition of uniform beds. Total 8 times of tests using an annular flume are also conducted in a location, low times respectively by seasons: the fall, winter. Experimental results of erosional tests show that the critical shear stress for erosion varies in the range of $0.12{\sim}0.36N/m^2$ and the coefficient of erosion rate varies in the range of $120.91{\sim}6.72mg/cm^2{\cdot}hr$, over the corresponding bulk-density range $1.15{\sim}1.34g/cm^3$. Although the calculated parameters of erosional properties are remarkably different in quantity compared with those of other cohesive sediments(lake Okeechobee) and Kaolinite, their seasonal variabilities within Keum Estuary appear to be insignificant.

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

The Changes of Aperture Variation and Hydraulic Conductivity for Compression Variability (압력에 따른 균열 간극변화와 수리전도도 변화 관찰)

  • 채병곤;이철우;정교철;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.1-11
    • /
    • 2003
  • In order to measure aperture variation dependent on normal stress and to characterize on relationship between aperture variation and hydraulic conductivity this study measured apertures of rock fractures under a high resolution confocal laser scanning microscope (CLSM) with application of five stages of uniaxial normal stresses. From this method the response of aperture can be continuously characterized on one specimen by different loads of normal stress. The results of measurements showed a rough geometry of fracture bearing non-uniform aperture. They also revealed different values of aperture variations according to the load stages on each position along a fracture due to the fracture roughness. Laboratory permeability tests were also conducted to evaluate the changes of permeability coefficients related to the aperture variations by different loads. The results of permeability tests revealed that the hydraulic conductivity was not reduced at a fixed rate with increase of normal load. Moreover, the rates of aperture variations did not match to those of hydraulic conductivity. The hydraulic conductivity calculated in this study did not follow the cubic law, representing that the parallel plate model is not suitable to express the fracture geometry corresponding to the results of aperture measurements under the CLSM.

Numerical Investigation of Turbulence Structure and Suspended Sediment Transport in Vegetated Open-Channel Flows (식생된 개수로에서 난류 구조와 부유사 이동 현상의 수치해석)

  • Gang, Hyeong-Sik;Choe, Seong-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.581-592
    • /
    • 2000
  • Turbulence structure and suspended sediment transport capacity in vegetated open-channel flows are investigated numerically in the present paper. The $\textsc{k}-\;\varepsilon$ model is employed for the turbulence closure. Mean velocity and turbulence characteristics including turbulence intensity, Reynolds stress, and production and dissipation of turbulence kinetic energy are evaluated and compared with measurement data available in the literature. The numerical results show that mean velocity is diminished due to the drag provided by vegetation, which results in the reduction of turbulence intensity and Reynolds stress. For submerged vegetation, the shear at the top of vegetation dominates turbulence production, and the turbulence production within vegetation is characterized by wakes. For emergent condition, it is observed that the turbulence generation is dominated by wakes within vegetation. In general, simulated profiles compares favorably to measured data. Computed values of eddy viscosity are used to solve the conservation equation for suspended sediment, yielding sediment concentration more uniform over the depth compared with the one in the plain channel. The simulation reveals that the suspended load decreases as the vegetation density increases and the suspended load increases as the particle diameter decreases for the same vegetation density.

  • PDF

Estimation of Saturation Velocity in Soils During Rainfall using Soil Box Test (모형토조실험을 이용한 강우시 토층의 포화속도 산정)

  • Kim, Chul-Min;Song, Young-Suk;Kim, Hak-Joon
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.377-385
    • /
    • 2015
  • We constructed a model test apparatus to evaluate the dependence of the saturation velocity (Vs) in soils on rainfall intensity (IR). The apparatus comprises a soil box, a rainfall simulator, and measuring sensors. The model grounds (60 cm × 50 cm × 15 cm) were formed by Joomunjin standard sand with a relative density of 75%. The rainfall simulator can control the rainfall intensity to reenact the actual rainfall in a soil box. Time Domain Reflectometer (TDR) sensors and tensiometers were installed in the soils to measure changes in the volumetric water content and matric suction due to rainfall infiltration. During the tests, the soil saturation was determined by raising the groundwater table, which was formed at the bottom of the soil box. [Please check that the correct meaning has been maintained.] The wetting front did not form at the ground surface during rainfall because the soil particles were uniform and the coefficient of permeability was relatively high. Our results show that the suction stress of the soils decreased with increasing volumetric water content, and this effect was most pronounced for volumetric water contents of 20%-30%. Based on a regression analysis of the relationship between rainfall intensity and the average saturation velocity, we suggest the following equation for estimating the saturation velocity in soils: Vsavg (cm/sec) = 0.068IR (mm/hr).

A Study on the Manufacturing Characteristics and Field Applicability of Engineering-scale Bentonite Buffer Block in a High-level Nuclear Waste Repository (고준위폐기물처분장 내 공학규모의 균질 완충재 블록 성형특성 및 현장적용성 분석)

  • Kim, Jin-Seop;Yoon, Seok;Cho, Won-Jin;Choi, Young-Chul;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.123-136
    • /
    • 2018
  • The objective of this study is to propose a new methodology to fabricate a reliable engineering-scale buffer block, which shows homogeneous and uniform distribution in buffer block density, for in-situ experiments. In this study, for the first time in Korea, floating die press and CIP (Cold Isostatic Press) are applied for the manufacture of an engineering-scale bentonite buffer. The optimized condition and field applicability are also evaluated with respect to the method of manufacturing the buffer blocks. It is found that the standard deviation of the densities obtained decreases noticeably and that the average dry density increases slightly. In addition, buffer size is reduced by about 5% at the same time. Through the test production, it is indicated that the stress release phenomenon decreases after the application of the CIP method, which leads to a reduction in crack generation on the surface of the buffer blocks over time. Therefore, it is confirmed that the production of homogeneous buffer blocks on industrial scale is possible using the method suggested in this study, and that the produced blocks also meet the design conditions for dry density of buffer blocks in the AKRS (Advanced Korea Reference Disposal System of HLW).

A Study on Liquefaction Assessment of Moderate Earthquake Region concerning Earthquake Magnitude of Korea (국내 지진규모를 고려한 중진 지역에서의 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Park, Keun-Bo;Park, Seong-Yong;Seo, Kyung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.125-134
    • /
    • 2006
  • Conventional methods for the assessment of liquefaction potential were primary for severe earthquake regions $(M{\geq}7.5)$ such as North America and Japan. In Korea, an earthquake related research has started in 1997, but most contents in the guidelines were still quoted from literature reviews of North America and Japan, which are located in strong earthquake region. Those are not proper in a moderate earthquake regions including Korea. Also the equivalent uniform stress concept (Seed & Idriss, 1971) using regular sinusoidal loading which is used, in a conventional method for the assessment of liquefaction potential, can't reflect correctly the dynamic characteristics of real irregular earthquake motions. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. From the results, screening limits in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions. Also from the tests using constant wedge loading and incremental wedge loading, the characteristics of liquefaction resistance of saturated sand under irregular ground motions are investigated.

A Laboratory Study on Erosional Properties of Fine Cohesive Sediments from Saemankeum Artificial Lake (새만금 인공호 점착성 퇴적물의 침식특성에 대한 실험적 연구)

  • Hwang, Kyu-Nam;Kim, Hyun-Min;Ahn, Ik-Jang
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.473-482
    • /
    • 2008
  • The purpose of this study is to quantitatively estimate the erosional properties for cohesive sediment from Saemankeum artificial lake. A series of erosion tests were conducted with Chonbuk annular flume, which is the first one constructed in this country and verified with validities. Each erosion tests were conducted under a uniform bed condition but a different bed density respectively, and its critical shear stress for erosion(${\tau}_{ce}$) as well as the erosion rate coefficient (${\varepsilon}_M$) were determined quantitatively. Since the erosional properties of the cohesive sediments vary largely depending in the physico-chemical properties, such properties of Saemankeum sediments were also estimated and their effects on the erosional properties were analyzed. For Saemankeum sediments, it can be seen that ${\tau}_{ce}$ increases from $0.26N/m^2$ to $0.52N/m^2$ and ${\varepsilon}_M$ decreases exponentially from $14.28mg/cm^2\;hr$ to $6.02mg/cm^2\;hr$, as the bed density varies from $1.17g/cm^3$ to $1.34g/cm^3$. The erosional parameters of Saemankeum sediments are found to be remarkably different in quantity as compared with those for cohesive sediments from other sites. Particularly, ${\tau}_{ce}$ for Saemankeum sediments is known to be larger than that of Kunsan sediments but similar with that of Shihwa sediments, while ${\varepsilon}_M$ for Saemankeum sediments is shown to be smaller than that for Kunsan sediments.

Numerical Analysis of Nonlinear Shoaling Characteristics over Surf Zone Using SPH and Lagrangian Dynamic Smagronsky Model (Lagrangian Dynamic Smagronsky 난류모형과 SPH를 이용한 쇄파역에서의 비선형 천수거동에 관한 연구)

  • Cho, Yong-Jun;Lee, Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-96
    • /
    • 2007
  • Nonlinear shoaling characteristics over surf zone are numerically investigated based on spatially averaged NavierStokes equation. We also test the validity of gradient model for turbulent stresses due to wave breaking using the data acquainted during SUPERTANK LABORATORY DATA COLLECTION PROJECT(Krauss et al., 1992). It turns out that the characteristics length scale of breaking induced current is not negligible, which firmly stands against ever popular gradient model, ${\kappa}-{\varepsilon}$ model, but favors Large Eddy Simulation with finer grid. Based on these observations, we model the residual stress of spatially averaged NavierStokes equation after Lagrangian Dynamic Smagorinsky(Meneveau et al., 1996). We numerically integrate newly proposed wave equations using SPH with Gaussian kernel function. Severely deformed water surface profile, free falling water particle, queuing splash after landing of water particle on the free surface and wave finger due to structured vortex on rear side of wave crest(Narayanaswamy and Dalrymple, 2002) are successfully duplicated in the numerical simulation of wave propagation over uniform slope beach, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.