• Title/Summary/Keyword: Uniform Shear Flow

Search Result 79, Processing Time 0.024 seconds

Numerical study of wake and aerodynamic forces on a twin-box bridge deck with different gap ratios

  • Shang, Jingmiao;Zhou, Qiang;Liao, Haili;Larsen, Allan;Wang, Jin;Li, Mingshui
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • Two-dimensional Delayed Detached Eddy Simulation (DDES) was carried out to investigate the uniform flow over a twin-box bridge deck (TBBD) with various gap ratios of L/C=5.1%, 12.8%, 25.6%, 38.5%, 73.3% and 108.2% (L: the gap-width between two girders, C: the chord length of a single girder) at Reynolds number, Re=4×104. The aerodynamic coefficients of the prototype deck with gap ratio of 73.3% obtained from the present simulation were compared with the previous experimental and numerical data for different attack angles to validate the present numerical method. Particular attention is devoted to the fluctuating pressure distribution and forces, shear layer reattachment position, wake velocity and flow pattern in order to understand the effects of gap ratio on dynamic flow interaction with the twin-box bridge deck. The flow structure is sensitive to the gap, thus a change in L/C thus leads to single-side shedding regime at L/C≤25.6%, and co-shedding regime at L/C≥35.8% distinguished by drastic changes in flow structure and vortex shedding. The gap-ratio-dependent Strouhal number gradually increases from 0.12 to 0.27, though the domain frequencies of vortices shedding from two girders are identical. The mean and fluctuating pressure distributions is significantly influenced by the flow pattern, and thus the fluctuating lift force on two girders increases or decreases with increasing of L/C in the single-side shedding and co-shedding regime, respectively. In addition, the flow mechanisms for the variation in aerodynamic performance with respect to gap ratios are discussed in detail.

Effect of nonionic surfactants on the electrorheology of emulsions

  • Ha, Jong-Wook;Moon, Jung-Hyuk;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.241-246
    • /
    • 1999
  • In this study, we consider the effect of nonionic surfactants on the rheological responses of emulsion systems under the action of a uniform do electric field. The model emulsions consist of a less conducting dispersed phase and a more conducting continuous phase. When the shear flow is weak, the positive viscosity effect is produced due to the formation of chain-like morphology. The nonionic surfactants used here generate two distinctively different effects. Specifically, first, the steric hindrance induced by the surfactant molecules renders the structure unstable, and thereby reduces the degree of positive viscosity effect. Secondly, the presence of surfactant molecules also prevents the rotation of the dispersed droplets by anchoring across the interface or by decreasing the size of dispersed phase. The second effect suppresses the negative viscosity effect.

  • PDF

Process Design to Prevent Internal & External Defects of Cold Extruded Products with Double Ribs (이중 리브를 가진 냉간 압출품의 내.외부 결함 방지를 위한 공정 설계)

  • 김동진;김병민
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.612-619
    • /
    • 1999
  • Internal and external defects of an inner pulley for automobile air conditioner are investigated in this study. Inner pulley is a part of compressor clutch assembly of automobile air conditioner. In cold forging of inner pulley, the design requirement are to keep the same height of the inner rib and outer one and to make uniform distribution of hardness in the forged product. At the end of the forging of inner pulley, the piping defect as an external defect begins to form at the back center of the billet. The internal crack as an internal defect also occur at the adiabatic shear band which usually has maximum ductile fracture value. It is important to predict when the internal and external defects occur during the deformation process, in order to minimize the amount of discard that is generated. The finite element simulations are applied to analyze the defects. The validity of the computational results are examined by experiments. These computational results are in good agreement with the experimental ones.

  • PDF

Assessment of Interpolation Schemes in the Window Deformation PIV (조사구간 윈도우 변형을 이용한 PIV에서 보간법 평가)

  • Kim, Byoung-Jae;Sung, Hyung-Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.59-68
    • /
    • 2006
  • We have evaluated the performances of the following six interpolation schemes used for win-dow deformation in particle image velocimetry (PIV): the linear, quadratic, B-spline, cubic, sinc, Lagrange interpolations. Artificially generated images comprised of particles of diameter in a range pixel were investigated. Three particle diameters were selected for detailed evaluation: pixel with a constant particle concentration $0.02particle/pixel^2$. Two flow patterns were considered: uniform and shear flows. The mean and random errors, and the computation times of the interpolation schemes were determined and compared.

  • PDF

조사구간 윈도우 변형을 이용한 PIV에서 보간법 평가

  • Kim, Byeong-Jae;Seong, Hyeong-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.25-35
    • /
    • 2006
  • We have evaluated the performances of the following six interpolation schemes used for window deformation in particle image velocimetry (PIV): the linear, quadratic, B-spline, cubic, sinc, Lagrange interpolations. Artificially generated images comprised of particles of diameter in a range $1.1{\leq}d_p\leq10.0$ pixel were investigated. Three particle diameters were selected for detailed evaluation: $d_p$=2.2, 3.3, 4.4 pixel with a constant particle concentration 0.02 $particle/pixel^2$. Two flow patterns were considered: uniform and shear flows. The mean and random errors, and the computation times of the interpolation schemes were determined and compared.

  • PDF

Diffusion of a Steady Horizontal Line Source in a Turbulent Shear Flow (난류전단(亂流剪斷) 흐름에서의 정상(定常) 수평(水平) 선오염원(線汚染源)의 확산(擴散))

  • Jun, Kyung Soo;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.191-199
    • /
    • 1993
  • Diffusion of a steady horizontal line source in a turbulent shear flow is simulated by numerically solving a steady two-dimensional advective diffusion equation. The computational result is compared with the analytic solution for uniform velocity and diffusivity distributions over the depth. The analytic solution for constant velocity and diffusivity overestimates the degree of vertical mixing. The normalized equation indicates that friction factor is the only physical parameter that governs the vertical diffusion process. Sensitivities of the diffusion process to the friction factor and initial source position are analyzed. The rate of vertical mixing varies approximately as the square root of the friction factor. The optimal source position, which gives the most rapid mixing, lies above the mid-depth and moves toward the water surface as the friction factor increases.

  • PDF

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel

  • Siddiqui, M. Salman;Rasheed, Adil;Kvamsdal, Trond
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.405-416
    • /
    • 2019
  • Aerodynamic characteristic of a small scale wind turbine under the influence of an incoming uniform wind field is studied using k-ω Shear Stress Transport turbulence model. Firstly, the lift and drag characteristics of the blade section consisting of S826 airfoil is studied using 2D simulations at a Reynolds number of 1×105. After that, the full turbine including the rotational effects of the blade is simulated using Multiple Reference Frames (MRF) and Sliding Mesh Interface (SMI) numerical techniques. The differences between the two techniques are quantified. It is then followed by a detailed comparison of the turbine's power/thrust output and the associated wake development at three tip speeds ratios (λ = 3, 6, 10). The phenomenon of blockage effect and spatial features of the flow are explained and linked to the turbines power output. Validation of wake profiles patterns at multiple locations downstream is also performed at each λ. The present work aims to evaluate the potential of the numerical methods in reproducing wind tunnel experimental results such that the method can be applied to full-scale turbines operating under realistic conditions in which observation data is scarce or lacking.

Linear estimation of conditional eddies in turbulence (난류구조의 조건와류에 대한 선형적 평가)

  • 성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1175-1188
    • /
    • 1988
  • Linear estimation in isotropic turbulence is examined to approximate conditional averages in the form of fluctuating velocity fields conditioned on local velocity. The conditional flow fields and their associated vorticity field are computer using experimental data [Van Atta and Chen] and energy spectrum model [Driscoll and Kennedy]. It appears that ring vorticies could be the dominant structure. Due to the extremely large vorticity in the viscous region of a conditional ring vortex, the energy spectrum model can be used appropriately by changing the Reynolds number. The hairpin vortex could be detected by combining vorticies in isotropic field with an anisotropic orientation imbedded in uniform mean shear flow and this is consistent with other studies [Kim and Moin].

A Laboratory Study on Erosional Properties of the Deposit Bed of Kaolinite Sediments (고령토 퇴적저면의 침식특성에 대한 실험적 연구)

  • Kim, Yong-Muk;Kim, Hyun-Min;Hwang, Kyu-Nam;Yang, Su-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1181-1190
    • /
    • 2014
  • In this study, the erosional parameters for deposit beds were quantitatively estimated domestically for the first time through the erosion tests using an annular flume. Four erosion tests were carried out for the deposit beds with different consolidation structures, which were obtained by consolidating the kaolinite slurries for a given time durations. Results of erosion tests showed that the bed shear strength ${\tau}_s$ increased with the consolidation time and bed depth. The erosion rate ${\epsilon}$ was also shown to be related well with the excess shear stress ${\tau}_b-{\tau}_s$ which was given by the difference between flow shear stress ${\tau}_b$ and bed shear strength ${\tau}_s$. While the logarithm of the erosion rate was linearly related with the excess shear stress as ${\tau}_b-{\tau}_s{\geq}0.1N/m^2$, however, the erosion rate decreased rapidly with it when ${\tau}_b-{\tau}_s{\leq}0.1N/m^2$. These erosion test results were also shown to be good enough to verify by comparing with the test results from previous studies and a new equation was suggested to describe the erosion rate more well in the region of ${\tau}_b-{\tau}_s{\leq}0.1N/m^2$.

A Numerical Study on the Karman Vortex Generated by Breaking of Mountain Wave

  • Sung-Dae Kang;Fujio Kimura
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.105.2-117
    • /
    • 1992
  • The formation mechanism of the vortex streets in the lee of the mountain Is Investigated by a three-dimensional numerical model. The model is based upon the hydrostatic Boussinesq equations in which the vertical turbulent momentum flux is estimated by a turbulence parameterization scheme, but the horizontal viscosity is assumed to be constant. The results show that Karman vortex streets can form even without surface friction in a constant ambient flow with uniform stratification. The vortex formation is related to breaking of the mountain wave, which depends on the Froude number (Fr). In the case of a three-dimensional bell-shaped mountain, the wave breaking occurs when Fr is less than about 0.8, while a barman vortex forms when Fr is less than about 0.22. Vortex formation also depends on Reynolds number, which is estimated from the horizontal diffusivity. The vortex formation can be explained by the wave saturation theory given by Lindzen (1981) with some modification. Simulations in this study show that in the case of Karman vortex formation the momentum flux in the lower level is much larger than the saturated momentum flux, whereas it is almost equal to the saturated momentum at the upper levels as expected from the saturation theory. As a result, large flux divergence is produced in the lower layer, the mean flow is decelerated behind the mountain, and the horizontal wind shear forms between unmodified ambient wind. The momentum exchange between the mean flow and the mountain wave is produced by the turbulence within a breaking wave. From the result, well developed vortices like Karman vortex can be formed. . The results of the momentum budget calculated by the hydrostatic model are almost the same as nonhydrostatic results as long as horizontal scale of the mountain is 10 km. A well developed barman vortex similar to the hydrostatic one was simulated in the nonhydrostatic case. Therefore, we conclude that the hydrostatic assumption is adequate to investigate the origin of the Km8n vortex from the viewpoint of wave breaking.

  • PDF