DOI QR코드

DOI QR Code

A Laboratory Study on Erosional Properties of the Deposit Bed of Kaolinite Sediments

고령토 퇴적저면의 침식특성에 대한 실험적 연구

  • Received : 2013.09.11
  • Accepted : 2014.05.01
  • Published : 2014.08.01

Abstract

In this study, the erosional parameters for deposit beds were quantitatively estimated domestically for the first time through the erosion tests using an annular flume. Four erosion tests were carried out for the deposit beds with different consolidation structures, which were obtained by consolidating the kaolinite slurries for a given time durations. Results of erosion tests showed that the bed shear strength ${\tau}_s$ increased with the consolidation time and bed depth. The erosion rate ${\epsilon}$ was also shown to be related well with the excess shear stress ${\tau}_b-{\tau}_s$ which was given by the difference between flow shear stress ${\tau}_b$ and bed shear strength ${\tau}_s$. While the logarithm of the erosion rate was linearly related with the excess shear stress as ${\tau}_b-{\tau}_s{\geq}0.1N/m^2$, however, the erosion rate decreased rapidly with it when ${\tau}_b-{\tau}_s{\leq}0.1N/m^2$. These erosion test results were also shown to be good enough to verify by comparing with the test results from previous studies and a new equation was suggested to describe the erosion rate more well in the region of ${\tau}_b-{\tau}_s{\leq}0.1N/m^2$.

본 연구에서는 환형수조를 이용한 침식실험을 통하여 국내 최초로 퇴적저면의 침식매개변수들이 정량적으로 산정되었다. 퇴적저면은 고농도의 고령토 슬러리를 기 설정된 시간 동안 압밀시켜 조성되었으며, 각기 다른 압밀구조를 갖는 퇴적저면 조건 하에서 총 4회의 침식실험이 수행되었다. 침식실험 결과에 따르면, 흐름전단응력 ${\tau}_b$에 대한 저항력을 나타내는 저면전단강도 ${\tau}_s$는 압밀시간 및 저면(퇴적층) 깊이가 깊어짐에 따라 증가하는 것으로 나타났다. 한편, 침식률${\epsilon}$은 흐름전단응력과 저면전단강도의 차로 주어지는 잉여전단응력 ${\tau}_b-{\tau}_s$과 상관성이 매우 큰 것으로 나타났는데, ${\tau}_b-{\tau}_s{\leq}0.1N/m^2$인 경우에 침식률의 로그 값은 잉여전단응력과 선형적 관계에 있으나, ${\tau}_b-{\tau}_s{\leq}0.1N/m^2$인 조건에서는 잉여전단응력이 작아질수록 침식률이 급격하게 작아지는 경향이 있는 것으로 나타났다. 또한 본 연구에서는 과거 연구결과와의 비교검토를 통하여 본 침식실험 결과에 대한 타당성이 입증되었으며, $0.1N/m^2$ 이하의 잉여전단응력 구간에서 침식률을 보다 잘 표현할 수 있는 새로운 침식률 산정식이 제시되었다.

Keywords

References

  1. Ariathurai, R. and Arulanandan, K. (1978). "Erosion rates of cohesive soils."J. of Hydr. Div., ASCE, Vol. 104, No. HY2, pp. 279-283.
  2. Dixit, J. G. (1982). Resuspension potential of deposited kaolinite beds, Master's Thesis, University of Florida, Gainesville, Florida.
  3. Hwang, K. N., Ryu, H. R., Lee, S. O. and Cho, Y. S. (2006). "Automated sediment erosion rate apparatus for measurement of erosion rate of undisturbed sediments."ICSE-4(The 4th International Conference on Scour and Erosion, 2008), ISSMGE & Japanese Geotechnical Society, Chuo Univ., Tokyo, Japan, pp. 115 (CD pp. 201-207).
  4. Hwang, K. N. and Mehta, A. J. (1989). "Fine-sediment erodibility in lake Okeechobee, Florida."UFL/COEL-89/019, Coastal and Oceanographic Engineering Dept., University of Florida, Gainesville, Florida.
  5. Hwang, K. N., So, S. D. and Kim, T. M. (2005). "An experimental study for estimation of erosion rate of fine cohesive sediments." J. of Ocean Engineering and Technology, KSCOE, Vol. 17, No. 2, pp. 119-128 (in Korean).
  6. Kim, H. M. (2008). A study on erosional properties of deposit bed with Kaolinite sediments, Master's Thesis, Chonbuk National University (in Korean).
  7. Kim, M. K., Yang, S. H., Tae, D. H. and Hwang, K. N. (2011). "A laboratory study for erosional properties of cohesive sediments from Mokpo coast."J. of the Korea Society of Ocean Engineers, KSOE, Vol. 25, No. 1, pp. 14-21 (in Korean). https://doi.org/10.5574/KSOE.2011.25.1.014
  8. Kuijper, C., Corelisse, J. M. and Winterwerp, J. C. (1989). "Research on erosive properties of cohesive sediments."J. of Geophysical Research, Vol. 94, No. C10, pp. 14341-14350. https://doi.org/10.1029/JC094iC10p14341
  9. Kwak, K. S., Lee, J. H., Park, J. H. and Woo, H. S. (2006). "Evaluation of local erosion characteristics of fine-grained soils in the west coast area."J. of Korean Society of Civil Engineers, KSCE, Vol. 26, No. 5C, pp. 323-331 (in Korean).
  10. Lick, W. and McNeil, J. (2001). "Effects of sediment bulk properties on erosion rates."J. of science of the total environment, Vol. 266, pp. 41-48. https://doi.org/10.1016/S0048-9697(00)00747-6
  11. McNeil. J., Taylor, C. and Lick, W. (1996). "Measurements of erosion of undisturbed bottom sediments with depth."J. of Hydraulic Eng., Vol. 122, pp. 316-324. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(316)
  12. Mehta, A. J. (2013). "An introduction to hydraulics of fine sediment transport."World scientific.
  13. Nguyen, D. P., Jung, E. T., Park, K. C. and Hwang, K. N. (2012). "A laboratory study on rheological properties of fluid mud."J. of Ocean Engineering and Technology, KSCOE, Vol. 24, No. 3, pp. 203-209 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.3.203
  14. Parchure, T. M. (1984). Erosional behavior of deposited cohesive sediments, Ph.D. Dissertation, University of Florida, Gainesville, Florida.
  15. Parchure, T. M. and Mehta, A. J. (1985). "Erosion of soft cohesive sediment deposits."J. of the Hydraulics Division, ASCE, Oct.
  16. Ryu, H. R., Lee, H. S. and Hwang, K. N. (2006). "The quantitative estimation of erosion rate parameters for cohesive sediments from Keum estuary."J. of Ocean Engineering and Technology, KSCOE, Vol. 18, No. 4, pp. 283-293 (in Korean).

Cited by

  1. A Laboratory Study on Erosional Properties of the Deposit Bed of Saemankeum Sediments vol.27, pp.2, 2015, https://doi.org/10.9765/KSCOE.2015.27.2.105
  2. Hydraulic Resistance Characteristics of Compacted Weathered Granite Soil by Rotating Cylinder Test and Image Analysis vol.32, pp.7, 2016, https://doi.org/10.7843/kgs.2016.32.7.25