• Title/Summary/Keyword: Uniform Process

Search Result 1,956, Processing Time 0.035 seconds

Analysis of Non-uniform Tension Effect on Dynamic Characteristics of Spinning Circular Plates in the Wafer Cutting Machine (웨이퍼 가공기에서 회전 원판의 동특성에 미치는 불균일 장력의 영향 분석)

  • 임경화
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.324-330
    • /
    • 1998
  • The forced vibration analysis of the outer-clamped spinnig annular disk with arbitrary in-plane is formulated to investigate the influence of non-uniform tension on the cutting accuracy of wafer cutting machine. The arbitrary in-plan force along the outer edge of an annular plate is expressed as a Fourier series. Galerkin method and modal superposition method are employed to obtain the forced responses under the static force and the impulse force in astationary coordinate. Through qualitative and quantitative analyses, it can be found that forced and impulse responses are sensitive to the non-uniformity of in-plane force, which can bring a bad effect to the accuracy of wafer cutting process. Also, in case of a spinning disk with non-uniform in-plane force, critical speed is required to define in a different way, compared with conventional definition in axi-symmetrical spinning disk.

  • PDF

Development of a process to apply uniform pressure to bond CFRP patches to the inner surface of undercut-shaped sheet metal parts (언더컷 형상의 판재 성형품에 보강용 CFRP 패치의 접합을 위한 공정기술 개발)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Cho, Hoon;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • Partial reinforcement of sheet metal parts with CFRP patch is a technology that can realize ultra-lightweight body parts while overcoming the high material cost of carbon fiber. Performing these patchworks with highly productive press equipment solves another issue of CFRP: high process costs. The A-pillar is the main body part and has an undercut shape for fastening with other parts such as roof panels and doors. Therefore, it is difficult to bond CFRP patches to the A-pillar with a general press forming tool. In this paper, a flexible system that applies uniform pressure to complex shapes using ceramic particles and silicone rubber is proposed. By benchmarking various A-pillars, a reference model with an undercut shape was designed, and the system was configured to realize a uniform pressure distribution in the model. The ceramic spherical particles failed to realize the uniform distribution of high pressure due to their high hardness and point contact characteristics, which caused damage to the CFRP patch. Compression equipment made of silicone rubber was able to achieve the required pressure level for curing the epoxy. Non-adhesion defects between the metal and the CFRP patch were confirmed in the area where the bending deformation occurred. This defect could be eliminated by optimizing the process conditions suitable for the newly developed flexible system.

Two dimensional analysis of axial segregation by convection-diffusion model in batchwise and continuous Czochralski process

  • Wang, Jong-Hoe;Kim, Do-Hyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.117-121
    • /
    • 1997
  • It is shown theoretically that uniform axial dopant concentration distribution can be made throughout the crystal by continuous Czochralski process. Numerical simulation are performed for the transient two-dimensional convection-diffusion model. A typical value of the growth and system parameters for Czochralski growth of p-type, 4 inches silicon crystal was used in the numerical calculations. Using this model with proper model parameter, the axial segregation in batchwise Czochralski growth can be described. It is studied by comparing with the experimental data. With this model parameter, the uniform axial concentration distribution of dopant is predicted in continuous Czochralski process.

  • PDF

Preparation and Characterization of $SnO_2$ Thin Film by Atomic Layer Deposition

  • Kwack, Young-Jin;Choi, Woon-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.250-250
    • /
    • 2009
  • Thin film of $SnO_2$ was fabricated from plasma enhanced atomic layer deposition technology with bubbler type injector system by using TEMASn (tetrakisethylmethylamino tin) precursor. Mostly crystalline of $SnO_2$ films can be obtained with oxygen plasma and with water at relatively low temperature of $150^{\circ}C$. $SnO_2$ was deposited as an uniform rate of $1.0A^{\circ}$/cycle. In order to obtain uniform film, a seed oxide material was used before TEMASn deposition in ALD process. The process parameters were controlled to obtain dense thin film by atomic deposition methodology. The morphology and characterization of thin film with optimized process condition will be discussed.

  • PDF

Microstructure Characterization of the Solders Deposited by Thermal Evaporation for Flip Chip Bonding (진공 증발법에 의해 제조된 플립 칩 본딩용 솔더의 미세 구조분석)

  • 이충식;김영호;권오경;한학수;주관종;김동구
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.2
    • /
    • pp.67-76
    • /
    • 1995
  • The microstructure of 95wt.%Pb/5wt.%Sn and 63wt.%Sn/37wt.%Pb solders for flip chip bonding process has been characterized. Solders were deposited by thermal evaporation and reflowed in the conventional furnace or by rapid thermal annealing(RTA) process. As-deposited films show columnar structure. The microstructure of furnace cooled 63Sn/37Pb solder shows typical lamellar form, but that of RTA treated solder has the structure showing an uniform dispersion of Pb-rich phase in Sn matrix. The grain size of 95Pb/5Sn solder reflowed in the furnace is about $5\mu\textrm{m}$, but the grain size of RTA treated solder is too small to be observed. The microstructure in 63Sn/37Pb solder bump shows the segregation of Pb phase in the Sn rich matrix regardless of reflowing method. The 63Sn/37Pb solder bump formed by RTA process shows more uniform microstructure. These result are related to the heat dissipation in the solder bump.

  • PDF

UNIFORM ASYMPTOTICS FOR THE FINITE-TIME RUIN PROBABILITY IN A GENERAL RISK MODEL WITH PAIRWISE QUASI-ASYMPTOTICALLY INDEPENDENT CLAIMS AND CONSTANT INTEREST FORCE

  • Gao, Qingwu;Yang, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.611-626
    • /
    • 2013
  • In the paper we study the finite-time ruin probability in a general risk model with constant interest force, in which the claim sizes are pairwise quasi-asymptotically independent and arrive according to an arbitrary counting process, and the premium process is a general stochastic process. For the case that the claim-size distribution belongs to the consistent variation class, we obtain an asymptotic formula for the finite-time ruin probability, which holds uniformly for all time horizons varying in a relevant infinite interval. The obtained result also includes an asymptotic formula for the infinite-time ruin probability.

Field Enhanced Rapid Thermal Process for Low Temperature Poly-Si TFTs Fabrications

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.665-667
    • /
    • 2005
  • VIATRON TECHNOLOGIES has developed FE-RTP system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The system employs sequential heat treatment methods using temperature control and rapid thermal processor modules. The temperature control modules provide exceptionally uniform heating and cooling of the glass substrates to within ${\pm}2^a\;C$. The rapid thermal process that combines heating with field induction accelerates the treatment rates. The new FE-RTP system can process $730{\times}920mm$ glass substrates as thin as 0.4 mm. The uniform nature of poly-Si films produced by FE-RTP resulted in AMOLED panels with no laser-Muras. Furthermore, FE-RTP system also showed superior performances in other heat treatment processes involved in poly-Si TFT fabrications, such as dopant activation, gate oxide densification, hydrogenation, and pre-compaction.

  • PDF

EHect of Carbide Addition on Riping and Wear Properties of HSS (탄화물의 첨가가 고속도강의 HIP과 마모에 미치는 영향)

  • 김득중
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.188-195
    • /
    • 1996
  • In recent times the potential application of the high speed steel produced by HIP process for wear resistant and cutting materials are increasing. In this work the microstructure of Anval 30 produced by HIP process was investigated and the effect of WC, TiC addition on microstructure formation and wear properties were studied. After HIP process at 1150 $^{\circ}C$, the original feature of spherical raw powders was not removed and consequently, nonuniform microstructure was formed. However the WC added by simple powder mixture incereased the sinterbility of high speed steel and uniform microstructure formed. The wear characteristics of Anval 30 with carbide addition were tested at RT and $600^{\circ}C$. The uniform microstructure played an more important role in wear resistance as compared with the hardness.

  • PDF

Investigation on Fabrication Process and Tolerance of Resistance Body with A Uniform Thickness Shape on Organic Substrate for Application of Embedded Resistor (Embedded Resistor 적용을 위한 Organic 기판 위에 균일한 두께의 형상을 갖는 저항체의 제조공정과 편차에 대한 조사)

  • Park, Hwa-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.72-77
    • /
    • 2008
  • This paper investgated on fabrication process and tolerance of resistance body with a uniform thickness formed by the process of cavity type on organic substrate for application of embedded resistor. To improve the tolerance of resistance value according to a position of PCB cause by conventional screen printing, we introduced the process of cavity type from organic substrate. A resistor with a desired shape and volume was precisely formed by the process of cavity using a resistor paste and screen printing. This method can increase PCB's productivity by shortening its production time because process conditions of a screen prining device can be set quickly without any affection on its position accuracy.

Development of 2-inch Plastic Film STN LCD

  • Park, Sung-Kyu;Han, Jeong-In;Kim, Won-Keun;Kwak, Min-Gi
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Due to distinct properties of plastic substrates such as poor thermal resistance, non-rigidness and high thermal expansion, it is difficult to fabricate plastic film LCDs by conventional LCD processes. Poor thermal resistance and high thermal expansion of substrates induced deformation of substrates surface, mismatch of thermal expansion between ITO electrodes and substrates resulted in defects in the ITO electrodes during the high temperature process. Defects of ITO electrodes and non-uniform cell gap caused by non-rigid and flexible properties were also observed in the pressuring process. Based on in these observations, we used a newly developed material and fabrication process to prevent deformation of substrates, defects of electrodes and to maintain uniform cell gap. The maximum temperature of the process is limited up to $110^{\circ}C$ and pressure loaded during the process is five times less than conventional one. With these invented processes and materials, we obtained highly reliable Plastic Film STN LCDs whose electro-optical characteristics are better than or equivalent to those of typical glass LCDs.

  • PDF