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UNIFORM ASYMPTOTICS FOR THE FINITE-TIME RUIN

PROBABILITY IN A GENERAL RISK MODEL WITH

PAIRWISE QUASI-ASYMPTOTICALLY INDEPENDENT

CLAIMS AND CONSTANT INTEREST FORCE

Qingwu Gao and Yang Yang

Abstract. In the paper we study the finite-time ruin probability in a
general risk model with constant interest force, in which the claim sizes
are pairwise quasi-asymptotically independent and arrive according to an
arbitrary counting process, and the premium process is a general sto-
chastic process. For the case that the claim-size distribution belongs to
the consistent variation class, we obtain an asymptotic formula for the
finite-time ruin probability, which holds uniformly for all time horizons
varying in a relevant infinite interval. The obtained result also includes
an asymptotic formula for the infinite-time ruin probability.

1. Introduction

In this paper, we consider a general risk model with the claim sizes, their
arrival process and the premium process satisfying the following assumptions.

Assumption 1. The claim sizes {Xi, i ≥ 1} form a sequence of nonnegative,
identically distributed, but not necessarily independent random variables (r.v.s)
with common distribution F .

Assumption 2. The claim arrival process {N(t), t ≥ 0} is a general counting
process, independent of {Xi, i ≥ 1} and such that 0 < EN(t) < ∞ for all
0 < t <∞.

Assumption 3. The total amount of premiums accumulated up to time t ≥ 0,
denoted by C(t), is a nonnegative and nondecreasing stochastic process with
C(0) = 0 and C(t) <∞ almost surely for each t > 0.
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Denote the arrival time of i-claim by τi, i ≥ 1. Let r > 0 be the constant
interest force, that is to say, a monetary unit of capital will become ert after
time t, and let x ≥ 0 be the insurer’s initial reserve. Hence, the total reserve
up to time t ≥ 0 of the insurance company, denoted by Ur(t), satisfies

(1.1) Ur(t) = xert +

∫ t

0−

er(t−s)C(ds)−

N(t)∑

i=1

Xie
r(t−τi), t ≥ 0,

where the summation over an empty set of index values is assumed to vanish.
As generally admitted, once the insurer’s reserve becomes negative, then we

say that the ruin occurs. The ruin probability within a finite time t is defined
by

(1.2) ψr(x, t) = P (Ur(s) < 0 for some 0 ≤ s ≤ t),

and the infinite-time ruin probability is

ψr(x) = P (Ur(t) < 0 for some t ≥ 0).

Hereafter, all limit relationships are for x → ∞ unless mentioned oth-
erwise. For two positive functions a(·) and b(·), we write a(x) = O(b(x))
if lim sup a(x)/b(x) = C < ∞, write a(x) . b(x) or b(x) & a(x) if C ≤ 1,
write a(x) ∼ b(x) if a(x) . b(x) and b(x) . a(x), write a(x) = o(b(x)) if
C = 0. For two positive bivariate functions a(·, ·) and b(·, ·), we say that
relation a(x, t) ∼ b(x, t) holds uniformly for all t ∈ ∆ 6= ∅ if

lim
x→∞

sup
t∈∆

∣∣∣∣
a(x, t)

b(x, t)
− 1

∣∣∣∣ = 0.

Now we introduce some important classes of heavy-tailed distributions, one
of which is the subexponential class S. Say that a distribution V belongs to
the class S, denoted by V ∈ S, if V (x) = 1 − V (x) > 0 for all x > 0 and

V ∗2(x) ∼ 2V (x), where V ∗2 denotes the 2-fold convolution of V . Clearly, if
V ∈ S, then V is long-tailed, denoted by V ∈ L and characterized by

(1.3) V (x+ y) ∼ V (x) for all y 6= 0.

Another important class is the dominated variation class D. Say that a dis-
tribution V belongs to the class D, denoted by V ∈ D, if V (xy) = O(V (x))
for all y > 0. A slightly smaller class of D is the consistent variation class
C. Say that a distribution V belongs to the class C, denoted by V ∈ C, if
limyց1 lim infx→∞ V (xy)/V (x) = 1, or equivalently,

lim
yր1

lim sup
x→∞

V (xy)/V (x) = 1.

It is well-known that a proper inclusion relationships hold, namely

C ⊂ L ∩D ⊂ S ⊂ L.
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For more details of heavy-tailed distributions and their applications to insur-
ance and finance, we refer readers to Bingham et al. ([1]) and Embrechts et
al. ([3]).

As universally acknowledged, the finite-time ruin probability is more practi-
cal in ruin theory but much harder to research. For a risk model with constant
interest force, when its claim sizes and inter-arrival times are two sequences of
independent and identically distributed (i.i.d.) r.v.s, there are many works on
asymptotics for the finite-time ruin probability (see Tang ([12, 13]), Hao and
Tang ([4]), and references therein). Recently, Wang ([14]) showed that in a
risk model, the claim sizes {Xi, i ≥ 1} are i.i.d. r.v.s with common distribution
F ∈ L∩D, and their arrival process {N(t), t ≥ 0} is a general counting process
satisfying EN(t) > 0 and E(1 + ǫ)N(t) < ∞ for any fixed t > 0 and some
ǫ = ǫ(t) > 0, and {Xi, i ≥ 1}, {N(t), t ≥ 0} and {C(t), t ≥ 0} are mutually
independent, then for the fixed t > 0,

(1.4) ψr(x, t) ∼

∫ t

0−

F (xers)dEN(s).

Note that the independence assumption on the claim sizes is unrealistic in
most practical situations and it limits the usefulness of the obtained results to
some extent. Hence, in this paper we will consider a risk model with the claim
sizes following a certain dependence structure, which was introduced by Chen
and Yuen ([2]) and Yi et al. ([17]).

Definition 1.1. Say that two nonnegative r.v.s ξ1 and ξ2 with distributions
V1 and V2, respectively, are quasi-asymptotically independent if

(1.5) P (ξ1 > x, ξ2 > x) = o
(
V1(x) + V2(x)

)
.

More generally, two real-valued r.v.s ξ1 and ξ2 are still said to be quasi-
asymptotically independent if relation (1.5) holds with (ξ1, ξ2) on the left-
hand side replaced by (ξ+1 , ξ

+
2 ), (ξ

+
1 , ξ

−
2 ) and (ξ−1 , ξ

+
2 ). Say that a sequence of

r.v.s {ξi, i ≥ 1} are pairwise quasi-asymptotically independent if for all positive
integers i 6= j, the two r.v.s ξi and ξj are quasi-asymptotically independent.

Remark 1.1. We remark that the pairwise quasi-asymptotic independence al-
lows a wide range of dependence structures among r.v.s, for example, the
Farlie-Gumbel-Morgenstern family of distributions (see Kotz et al. ([7])) can
provide a simple mechanism to construct an n-dimensional joint distribution
such that its corresponding n r.v.s are pairwise quasi-asymptotically indepen-
dent. Also the pairwise quasi-asymptotic independence structure is wider than
some commonly used dependence structures, such as widely upper orthant
dependence/widely lower orthant dependence (WUOD/WLOD) (see Wang et
al. ([15])).

Recently, more and more attention has been paid to the finite-time ruin
probability in some dependent risk models with the claim sizes and/or their
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inter-arrival times satisfying a certain dependence structure, for example, see
Kong and Zong ([6]), Yang and Wang ([16]), Wang et al. ([15]), among others.
In particular, Wang et al. ([15]) considered a nonstandard risk model with
WUOD claim sizes and WLOD inter-arrival times, and assumed that {Xi, i ≥
1}, {N(t), t ≥ 0} and {C(t), t ≥ 0} are mutually independent, they proved that
if F ∈ L ∩ D, then relation (1.4) holds uniformly for all t in a finite interval.

Motivated by the results cited above, in the paper we aim at establishing an
asymptotic formula for the finite-time ruin probability of a general risk model
with pairwise quasi-asymptotically independent claim sizes arriving according
to an arbitrary counting process, with a feature that the asymptotic formula
holds uniformly for all times in a relevant infinite interval. In our main results,
we will discuss two cases, one is the case that the premium process {C(t), t ≥ 0}
is independent of {Xi, i ≥ 1} and {N(t), t ≥ 0}, another is that {C(t), t ≥ 0}
is not necessarily independent of {Xi, i ≥ 1} or {N(t), t ≥ 0}.

In the remaining part of this paper, we will present the main results in
Section 2, and prove them in Section 4 after giving some lemmas in Section 3.

2. Main results

In the section, we will state our main results of the paper. First, we introduce
some notation. For a distribution V and y > 0, we set

J+
V = − lim

y→∞
logV ∗(y)/ log y with V ∗(y) = lim inf

x→∞
V (xy)/V (x).

Define Λ = {t : EN(t) > 0} = {t : P (τ1 ≤ t) > 0} for a general counting
process {N(t), t ≥ 0}, and write t = inf{t : EN(t) > 0} = inf{t : P (τ1 ≤ t) >
0}. It is clear that

Λ =

{
[t,∞], if P (τ1 = t) > 0;
(t,∞], if P (τ1 = t) = 0.

Furthermore, we assume that the total discounted amount of premiums is finite,
that is,

0 ≤ C̃ =

∫ ∞

0−

e−rtC(dt) <∞ almost surely.

Theorem 2.1. Consider the general risk model introduced in Section 1, where

the claim sizes Xi, i ≥ 1, are pairwise quasi-asymptotically independent with

common distribution F ∈ C, and for any fixed t > 0, there exists some p > J+
F

such that E(N(t))p+1 < ∞. Then, for any fixed t0 ∈ Λ ∩ (0,∞), the relation

(1.4) holds uniformly for all t ∈ [t0,∞], if one of the following conditions is

true:
1. the premium process {C(t), t ≥ 0} is independent of {Xi, i ≥ 1} and

{N(t), t ≥ 0};

2. the total discounted amount of premiums C̃ satisfies that

(2.1) P (C̃ > x) = o(F (x)).
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Apparently, the condition on the general counting process that E(N(t))p+1 <
∞ for some p > J+

F is weaker than that of Wang ([14]), namely E(1+ǫ)N(t) <∞
for some ǫ > 0, for any fixed t > 0. According to Theorem 2.1, we can imme-
diately derive the corresponding result for the infinite-time ruin probability.

Corollary 2.1. Under the conditions of Theorem 2.1, it holds that

ψr(x) ∼

∫ ∞

0−

F (xert)dEN(t).

Remark 2.2. For Theorem 2.1 and Corollary 2.1 above, condition 1 has been
considered by Tang ([12]), Wang ([14]), Wang et al. ([15]), among others, while
as mentioned by Tang ([12]), condition 2 allows for a more realistic case that
the premium rate varies as a deterministic or stochastic function of the in-
surer’s current reserve, which does not require the independence between the
premium process and the claim process, and was also considered by Petersen
([9]), Michaud ([8]) and Jasiulewicz ([5]).

3. Lemmas

In order to prove Theorem 2.1, we need a series of lemmas, among which
the first lemma is a combination of Proposition 2.2.1 of Bingham et al. ([1])
and Lemma 3.5 of Tang and Tsitsiashvili ([10]).

Lemma 3.1. If a distribution V ∈ D, then

(1) for any p > J+
V , there are positive constants C and D such that

(3.1)
V (y)

V (x)
≤ C (x/y)

p
for all x ≥ y ≥ D;

(2) for any p > J+
V , it holds that

(3.2) x−p = o(V (x)).

The following second lemma will play an important role in proving the main
results, and is also of its own value and in the spirit of Proposition 5.1 of Tang
and Tsitsiashvili ([11]).

Lemma 3.2. If {ξi, 1 ≤ i ≤ n} are n pairwise quasi-asymptotically independent

and real-valued r.v.s with distributions Vi ∈ L∩D, 1 ≤ i ≤ n, respectively, then
for any fixed 0 < a ≤ b <∞,

(3.3) P

(
n∑

i=1

ciξi > x

)
∼

n∑

i=1

P (ciξi > x)

holds uniformly for all cn = (c1, c2, . . . , cn) ∈ [a, b]n.
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Proof. It should be mentioned that the idea of this proof is mainly from that
of Chen and Yuen ([2]). Relation (3.3) is trivial if n = 1. Herewith we assume
n ≥ 2. On the one hand, for an arbitrarily fixed v ∈ (1/2, 1),

P

(
n∑

i=1

ciξi > x

)
≤ P

(
n⋃

i=1

(ciξi > vx)

)
+ P

(
n∑

i=1

ciξi > x,

n⋂

i=1

(ciξi ≤ vx)

)

= I1 + I2.(3.4)

For I1, by Vi ∈ C, 1 ≤ i ≤ n, and the arbitrariness of v ∈ (1/2, 1), we have

(3.5) lim
vր1

lim sup
x→∞

I1∑n
i=1 P (ciξi > x)

≤ lim
vր1

lim sup
x→∞

∑n
i=1 P (ciξi > vx)∑n
i=1 P (ciξi > x)

= 1.

For I2, it follows that

I2 = P

(
n∑

i=1

ciξi > x,
x

n
< max

1≤k≤n
ckξk ≤ vx

)

≤
n∑

k=1

P




n∑

i=1,i6=k

ciξi > (1− v)x, ckξk >
x

n





≤
n∑

k=1

n∑

i=1,i6=k

P

(
ciξi >

(1− v)x

n− 1
, ckξk >

x

n

)
.(3.6)

Since 1
n >

1−v
n−1 , we derive from (1.5), (3.6) and Vi ∈ C ⊂ D, 1 ≤ i ≤ n, that

lim
x→∞

I2∑n
i=1 P (ciξi > x)

≤ lim
x→∞

n∑

k=1

n∑

i=1,i6=k

P
(
ciξi >

(1−v)x
n−1 , ckξk >

x
n

)

P (ciξi > x) + P (ckξk > x)

≤ lim
x→∞

n∑

k=1

n∑

i=1,i6=k

P
(
ξi >

(1−v)x
b(n−1) , ξk >

(1−v)x
b(n−1)

)

Vi

(
(1−v)x
b(n−1)

)
+ Vk

(
(1−v)x
b(n−1)

)

·
Vi

(
(1−v)x
b(n−1)

)
+ Vk

(
(1−v)x
b(n−1)

)

Vi(x/a) + Vk(x/a)

= 0.(3.7)

Thus, substituting (3.5) and (3.7) into (3.4) yields that

(3.8) P

(
n∑

i=1

ciξi > x

)
.

n∑

i=1

P (ciξi > x)

holds uniformly for all cn ∈ [a, b]n.
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On the other hand, for an arbitrarily fixed w > 1,

P

(
n∑

i=1

ciξi > x

)

≥ P

(
n∑

i=1

ciξi > x, max
1≤k≤n

ckξk > wx

)

≥
n∑

k=1

P

(
n∑

i=1

ciξi > x, ckξk > wx

)
−

∑

1≤i<j≤n

P (ciξi > wx, cjξj > wx)

= I3 − I4.(3.9)

For I3, it holds that

I3 ≥
n∑

k=1

P



ckξk > wx,

n∑

i=1,i6=k

ciξi > (1− w)x





≥
n∑

k=1

P
(
ckξk > wx, ciξi > (1− w)x, 1 ≤ i ≤ n, i 6= k

)

≥
n∑

k=1

P (ckξk > wx) −
n∑

k=1

n∑

i=1,i6=k

P
(
ckξk > wx, ciξi < (1− w)x

)

=
n∑

k=1

P (ckξk > wx) − I5.(3.10)

By the pairwise quasi-asymptotic independence property and Vi ∈ C ⊂ D,
1 ≤ i ≤ n, we obtain that

lim sup
x→∞

I5∑n
i=1 P (ciξi > x)

≤ lim sup
x→∞

n∑

k=1

n∑

i=1,i6=k

P (ckξk > wx, ciξi < (1 − w)x)

P (ckξk > x) + P (ciξi > x)

≤ lim sup
x→∞

n∑

k=1

n∑

i=1,i6=k

P (ξk > (w − 1)x/b, ξi < (1− w)x/b)

Vk ((w − 1)x/b) + Vi ((w − 1)x/b)

·
Vk ((w − 1)x/b) + Vi ((w − 1)x/b)

Vk(x/a) + Vi(x/a)

= 0.

This, along with (3.10), leads to

(3.11) lim inf
x→∞

I3∑n
i=1 P (ciξi > x)

≥ lim inf
x→∞

∑n
k=1 P (ckξk > wx)∑n
k=1 P (ckξk > x)

.
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For I4, by (1.5) and Vi ∈ C ⊂ D, 1 ≤ i ≤ n, we see that

lim sup
x→∞

I4∑n
i=1 P (ciξi > x)

≤ lim sup
x→∞

∑

1≤i<j≤n

P (ciξi > x, cjξj > x)

P (ciξi > x) + P (cjξj > x)

≤ lim sup
x→∞

∑

1≤i<j≤n

P (ξi > x/b, ξj > x/b)

Vi(x/b) + Vj(x/b)
·
Vi(x/b) + Vj(x/b)

Vi(x/a) + Vj(x/a)

= 0.(3.12)

From (3.9) to (3.12), and by Vi ∈ C, 1 ≤ i ≤ n, and the arbitrariness of w > 1,
it follows that

lim
wց1

lim inf
x→∞

P (
∑n

i=1 ciξi > x)∑n
i=1 P (ciξi > x)

≥ lim
wց1

lim inf
x→∞

∑n
i=1 P (ciξi > wx)∑n
i=1 P (ciξi > x)

= 1,

which implies that

(3.13) P

(
n∑

i=1

ciξi > x

)
&

n∑

i=1

P (ciξi > x)

holds uniformly for all cn ∈ [a, b]n.
Consequently, we will complete the proof of this lemma by combining (3.8)

and (3.13). �

The following third lemma is due to Lemma 3.5 of Wang ([14]).

Lemma 3.3. For the general risk model introduced in Section 1, we have

∞∑

i=1

P (Xie
−rτi1{τi≤t} > x) =

∫ t

0−

F (xers)dEN(s),

where 1A is the indicator function of an event A.

Let Dr(t) =
∑∞

i=1Xie
−rτi1{τi≤t} denote the discounted aggregated claims

of the risk model in Section 1. Finally, we will discuss the uniform asymptotics
of the probability P (Dr(t) > x) which plays a key role for the proof of Theorem
2.1.

Lemma 3.4. In the general risk model introduced in Section 1, if the claim

sizes Xi, i ≥ 1, are pairwise quasi-asymptotically independent with common dis-

tribution F ∈ C, and their arrival process {N(t), t ≥ 0} satisfies E(N(t))p+1 <
∞ for some p > J+

F and any fixed t > 0, then for any fixed t0 ∈ Λ ∩ (0,∞), it
holds uniformly for all t ∈ [t0,∞] that

(3.14) P (Dr(t) > x) ∼

∫ t

0−

F (xers)dEN(s).
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Proof. The idea is inspired by the proof of Theorem 1.1 of Tang ([13]). First,
we prove that relation (3.14) holds uniformly for all t ∈ [t0, T ], for an arbitrarily
fixed T ∈ (t0,∞). Note that, for all x > 0,

P (Dr(t) > x) =

(
m∑

n=1

+
∞∑

n=m+1

)
P

(
n∑

i=1

Xie
−rτi > x, N(t) = n

)

= K1 +K2,(3.15)

where m ≥ 1 is a temporarily fixed integer. Let D > 0 be the one appearing
in (3.1) and such that m + 1 ≤ x/D. Now consider K2, which is divided into
two parts as

K2 ≤




∑

m<n≤x/D

+
∑

x/D<n<∞



P

(
n∑

i=1

Xi > x

)
P (N(t) = n),

= K21 +K22,(3.16)

where the method of the division comes from Chen and Yuen ([2]). For K21,
by F ∈ C ⊂ D and Lemma 3.1(1), we have

K21 ≤
∑

m<n≤x/D

nF (x/n)P (N(t) = n)

≤ CF (x)
∑

m<n≤x/D

np+1P (N(t) = n)

≤ CF (x)E(N(t))p+11{N(t)>m},(3.17)

where p > J+
F and C > 0 are the two constants as that in (3.1). For K22, it

follows from Markov’s inequality that

(3.18) K22 ≤ P (N(t) > x/D) ≤ (x/D)−p−1E(N(t))p+11{N(t)>x/D}.

Substituting (3.17) and (3.18) into (3.16) and using Lemma 3.1(2) implies that,
uniformly for all t ∈ [t0, T ],

K2 . CF (x)E(N(t))p+11{N(t)>m}.(3.19)

Again by Lemma 3.1(1), we know that for all large x,

F (x) ≤ Cerpt0F (xert0) ≤ C0

∫ t0

0−

F (xers)dEN(s),(3.20)

where C0 = Cerpt0/EN(t0). Hence, from (3.19), (3.20) and the condition on
{N(t), t ≥ 0}, we obtain that

lim
m→∞

sup
t∈[t0,T ]

K2∫ t

0−
F (xers)dEN(s)

≤ lim
m→∞

sup
t∈[t0,T ]

CC0E(N(t))p+11{N(t)>m}

∫ t0
0− F (xe

rs)dEN(s)
∫ t0
0− F (xe

rs)dEN(s)
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= 0.(3.21)

Next, considerK1, let G(t1, . . . , tn+1) be the joint distribution of random vector
(τ1, . . . , τn+1), where 1 ≤ n ≤ m. Then, by Lemma 3.2 and the independence
between {Xi, i ≥ 1} and {N(t), t ≥ 0}, it holds uniformly for all t ∈ [t0, T ] and
1 ≤ n ≤ m that

P

(
n∑

i=1

Xie
−rτi > x, N(t) = n

)

=

∫

{0≤t1≤...≤tn≤t,tn+1>t}

P

(
n∑

i=1

Xie
−rti > x

)
dG(t1, . . . , tn+1)

∼
n∑

i=1

∫

{0≤t1≤...≤tn≤t,tn+1>t}

P (Xie
−rti > x)dG(t1, . . . , tn+1)

=

n∑

i=1

P
(
Xie

−rτi > x, N(t) = n
)
.

Thus, we have that, uniformly for all t ∈ [t0, T ],

K1 ∼
m∑

n=1

n∑

i=1

P
(
Xie

−rτi > x, N(t) = n
)

=

(
∞∑

n=1

−
∞∑

n=m+1

)
n∑

i=1

P
(
Xie

−rτi > x, N(t) = n
)

= K11 −K12.(3.22)

Clearly, by Lemma 3.3, we derive that for all t ∈ [t0, T ],

K11 =

∞∑

i=1

∞∑

n=i

P (Xie
−rτi > x, N(t) = n)

=
∞∑

i=1

P (Xie
−rτi1{τi≤t} > x)

=

∫ t

0−

F (xers)dEN(s).(3.23)

For K12, it follows that

K12 ≤ F (x)

∞∑

n=m+1

nP (N(t) = n) = F (x)EN(t)1{N(t)>m}.

Similarly as in the derivation of (3.21), we still obtain that

lim
m→∞

sup
t∈[t0,T ]

K12∫ t

0− F (xe
rs)dEN(s)

= 0.(3.24)
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Therefore, combining (3.15), (3.21)-(3.24) can prove that relation (3.14) holds
uniformly for all t ∈ [t0, T ].

Subsequently, we extend the uniformity of relation (3.14) to an infinite in-
terval [t0,∞]. By Lemma 3.1(1) again, it holds for all t ∈ Λ and all large x
that
∫∞

t F (xers)dEN(s)
∫ t

0−
F (xers)dEN(s)

=

∫∞

t F (xers)/F (xert)dEN(s)
∫ t

0−
F (xers)/F (xert)dEN(s)

≤ C2

∫∞

t e−prsdEN(s)
∫ t

0−
e−prsdEN(s)

,

which gives

lim
t→∞

lim sup
x→∞

∫∞

t
F (xers)dEN(s)

∫ t

0−
F (xers)dEN(s)

= 0.

Thus, for arbitrarily fixed ε > 0, there exists some large T0 ∈ Λ such that for
all large x,

(3.25)

∫ ∞

T0

F (xers)dEN(s) ≤ ε

∫ T0

0−

F (xers)dEN(s).

Applying Remark 2 of Yi et al. ([17]), we find that if F ∈ C, then

(3.26) P (Dr(∞) > x) ∼
∞∑

i=1

P (Xie
−rτi > x) =

∫ ∞

0−

F (xers)dEN(s),

which means that relation (3.14) holds for t = ∞.
On the one hand, by (3.25) and (3.26), it holds uniformly for all t ∈ (T0,∞]

that

P (Dr(t) > x) ≤ P (Dr(∞) > x) ∼

∫ ∞

0−

F (xers)dEN(s)

≤
(∫ t

0−

+

∫ ∞

T0

)
F (xers)dEN(s)

≤ (1 + ε)

∫ t

0−

F (xers)dEN(s).(3.27)

On the other hand, by (3.14) with t replaced by T0 and (3.25), it holds uniformly
for all t ∈ (T0,∞] that

P (Dr(t) > x) ≥ P (Dr(T0) > x) ∼

∫ T0

0−

F (xers)dEN(s)

≥
1

1 + ε

∫ ∞

0−

F (xers)dEN(s)

≥
1

1 + ε

∫ t

0−

F (xers)dEN(s).(3.28)
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Consequently, by (3.27) and (3.28), it holds that, for all t ∈ (T0,∞] and all
large x,

(1 − 2ε)

∫ t

0−

F (xers)dEN(s) ≤ P (Dr(t) > x) ≤ (1 + 2ε)

∫ t

0−

F (xers)dEN(s).

(3.29)

From the first part of this proof, we see that (3.29) still holds for all t ∈ [t0, T0]
and all large x. As a result, (3.29) holds for all t ∈ [t0,∞] and all large x.
Since ε > 0 can be arbitrarily close to 0, we conclude that relation (3.14) holds
uniformly for all t ∈ [t0,∞]. �

4. Proof of main results

We now proceed to prove Theorem 2.1. From the surplus process (1.1), we
can get its discounted value as

Ũr(t) = e−rtUr(t) = x+ C̃(t)−Dr(t), t ≥ 0,

where C̃(t) =
∫ t

0− e
−rsC(ds) and denotes the discounted value of premiums

accumulated up to time t > 0. Obviously, one can know by Assumption 3 on

{C(t), t ≥ 0} that 0 ≤ C̃(t) < ∞ almost surely for any fixed t > 0. By the
definition (1.2) of the finite-time ruin probability, we have

ψr(x, t) = P
(
Dr(s) > x+ C̃(s) for some 0 < s ≤ t

)
.

Then, it is easy to obtain that for any t ∈ Λ,

(4.1) ψr(x, t) ≤ P (Dr(t) > x)

and

(4.2) ψr(x, t) = P
( ⋃

0<s≤t

{
Dr(s) > x+ C̃(s)

})
≥ P

(
Dr(t) > x+ C̃(t)

)
.

For the uniform asymptotic upper bound for ψr(x, t) under conditions 1 and
2, it follows immediately from (4.1) and Lemma 3.4 that, uniformly for all
t ∈ [t0,∞],

ψr(x, t) .

∫ t

0−

F (xers)dEN(s).

Hence, it remains to derive the corresponding uniform asymptotic lower bound
for ψr(x, t), that is,

(4.3) ψr(x, t) &

∫ t

0−

F (xers)dEN(s)

holds uniformly for all t ∈ [t0,∞]. In the following, we formulate the proof of
the uniformity of (4.3) into two parts.

In the first part, we deal with the case of condition 1. Now we establish the
local uniformity of relation (4.3) for all t ∈ [t0, T ], where T ∈ (t0,∞). By (4.2),
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Lemma 3.4, F ∈ C ⊂ L and the local uniformity of (1.3), it holds uniformly for
all t ∈ [t0, T ] that

ψ(x, t) ≥ P
(
Dr(t) > x+ C̃(T )

)

=

∫ ∞

0−

P (Dr(t) > x+ y)P (C̃(T ) ∈ dy)

∼

∫ ∞

0−

∫ t

0−

F ((x+ y)ers)dEN(s)P (C̃(T ) ∈ dy)

∼

∫ ∞

0−

∫ t

0−

F (xers)dEN(s)P (C̃(T ) ∈ dy)

=

∫ t

0−

F (xers)dEN(s).

Subsequently, we deal with the uniformity of (4.3) for all t ∈ (T,∞] under
condition 1. By (4.2), Lemma 3.4 with t replaced by T , F ∈ C ⊂ L and the
local uniformity of (1.3), we prove that, uniformly for all t ∈ (T,∞],

ψ(x, t) ≥ P
(
Dr(T ) > x+ C̃

)

=

∫ ∞

0−

P (Dr(T ) > x+ y)P (C̃ ∈ dy)

∼

∫ ∞

0−

∫ T

0−

F ((x + y)ers)dEN(s)P (C̃ ∈ dy)

∼

∫ ∞

0−

∫ T

0−

F (xers)dEN(s)P (C̃ ∈ dy)

=

∫ T

0−

F (xers)dEN(s)

≥
1

1 + ε

∫ t

0−

F (xers)dEN(s),

where in the last step we used (3.25). Because ε > 0 is arbitrary, the relation
(4.3) holds uniformly for all t ∈ (T,∞]. So, we can obtain the uniformity of
(4.3) over all t ∈ (t0,∞] under condition 1.

In the second part, we turn to the case of condition 2. First, we consider the
local uniformity of relation (4.3) for all t ∈ [t0, T ]. Since F ∈ C, we see that for
any fixed ε > 0, there exits some δ0 > 0 such that for all large x,

(4.4) F ((1 + δ0)x) ≥ (1− ε)F (x).

It follows from (4.2) that for δ0 > 0 as above and all t ∈ [t0, T ],

ψr(x, t) ≥ P
(
Dr(t) > x+ C̃(T )

)

≥ P
(
Dr(t) > (1 + δ0)x

)
− P (C̃(T ) > δ0x)
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= H1 −H2.(4.5)

For H1, by Lemma 3.4 and (4.4), it holds uniformly for all t ∈ [t0, T ] that

H1 ∼

∫ t

0−

F ((1 + δ0)xe
rs) dEN(s)

≥ (1− ε)

∫ t

0−

F (xers) dEN(s).(4.6)

For H2, by condition 2 and F ∈ C ⊂ D, we get

lim sup
x→∞

H2

F (x)
= lim sup

x→∞

P (C̃(T ) > δ0x)

P (C̃ > δ0x)
·
P (C̃ > δ0x)

F (δ0x)
·
F (δ0x)

F (x)
= 0.

This, along with (3.20), yields that for all t ∈ [t0, T ],

(4.7) H2 ≤ εF (x) ≤ C0ε

∫ t0

0−

F (xers)dEN(s) ≤ C0ε

∫ t

0−

F (xers)dEN(s).

Hence, substituting (4.6) and (4.7) into (4.5) and using the arbitrariness of
ε > 0, we derive that relation (4.3) holds uniformly for all t ∈ [t0, T ].

Next, we focus on the uniformity of (4.3) for all t ∈ (T,∞] under condition
2. Let δ0 > 0 be fixed as above, by (4.2) we find that

ψr(x, t) ≥ P
(
Dr(T ) > x+ C̃

)

≥ P
(
Dr(T ) > (1 + δ0)x

)
− P (C̃ > δ0x)

= H3 −H4.(4.8)

For H3, by Lemma 3.4 with t replaced by T , (4.4) and (3.25), it holds uniformly
for all t ∈ (T,∞] that

H3 ∼

∫ T

0−

F ((1 + δ0)xe
rs) dEN(s)

≥ (1− ε)

∫ T

0−

F (xers) dEN(s)

≥ (1− 2ε)

∫ t

0−

F (xers) dEN(s).(4.9)

For H4, by condition 2 and F ∈ C ⊂ D, we get that for all t ∈ (T,∞],

lim sup
x→∞

H4∫ t

0
F (xers)dEN(s)

≤ lim sup
x→∞

H4∫ T

0−
F (xers)dEN(s)

≤ lim sup
x→∞

H4

F (δ0x)
·

F (δ0x)

F (xerT )EN(T )

= 0,
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which implies that for all t ∈ (T,∞] and all large x,

H4 ≤ ε

∫ t

0−

F (xers)dEN(s).(4.10)

Consequently, by (4.8)-(4.10) and the arbitrariness of ε > 0, we can obtain the
uniformity of (4.3) for all t ∈ (T,∞], and then relation (4.3) holds uniformly
for all t ∈ [t0,∞] under condition 2.
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