• 제목/요약/키워드: Uniaxial Compression

검색결과 508건 처리시간 0.033초

Mohr-Coulomb의 파괴기준을 기본으로한 퇴적암의 한계변형률 특성에 관한 연구 (Experiments Study on Critical Strain Properties of Sedimentary Rocks based on Mohr-Coulomb Strength Criterion)

  • 김영수;이재호;김광일;신시언;권태순;한희수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.821-832
    • /
    • 2008
  • The hazard warning levels are necessary for the rational design and safety construction of underground space, as mountain and urban tunnel. Sakurai provided the hazard warning levels for assessing the stability of tunnels using the critical strain of rock mass, which is defined as a ratio between uni-axial compressive strength and the Young's modulus. The concept of critical strain guidelines is introduced in this study for the assessment of tunnel safety during excavation. Moreover, in this paper, the critical strain properties of sedimentary rock in Korea has investigated and analysed in detail by Lab. test, as the uniaxial and triaxial compression tests. Finally, critical strain properties of sedimentary rock on uniaxial and triaxial stress condition is discussed the relationship of failure strain values, uniaxial and triaxial compression strengths, confining pressure and Young's modulus.

  • PDF

Energy evolution characteristics of coal specimens with preformed holes under uniaxial compression

  • Wu, Na;Liang, Zhengzhao;Zhou, Jingren;Zhang, Lizhou
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.55-66
    • /
    • 2020
  • The damage or failure of coal rock is accompanied by energy accumulation, dissipation and release. It is crucial to study the energy evolution characteristics of coal rock for rock mechanics and mining engineering applications. In this paper, coal specimens sourced from the Xinhe mine located in the Jining mining area of China were initially subjected to uniaxial compression, and the micro-parameters of the two-dimensional particle flow code (PFC2D) model were calibrated according to the experimental test results. Then, the PFC2D model was used to subject the specimens to substantial uniaxial compression, and the energy evolution laws of coal specimens with various schemes were presented. Finally, the elastic energy storage ratio m was investigated for coal rock, which described the energy conversion in coal specimens with various arrangements of preformed holes. The arrangement of the preformed holes significantly influenced the characteristics of the crack initiation stress and energy in the prepeak stage, whereas the characteristics of the cumulative crack number, failure pattern and elastic strain energy during the loading process were similar. Additionally, the arrangement of the preformed holes altered the proportion of elastic strain energy Ue in the total energy in the prepeak stage, and the probability of rock bursts can be qualitatively predicted.

고온 및 저온하에서의 암석의 변형, 파괴 특성 (Failure and Deformation Characteristics of Rock at High and Low Temperatures)

  • 정재훈;김영근;이형원;이희근
    • 터널과지하공간
    • /
    • 제2권2호
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression

  • Asadizadeh, Mostafa;Moosavi, Mahdi;Hossaini, Mohammad Farouq
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.29-42
    • /
    • 2018
  • This paper presents the results of an empirical study in which square rock-like blocks containing two parallel pre-existing rough non-persistent joints were subjected to uniaxial compression load. The main purpose of this study was to investigate uniaxial compressive strength and deformation modulus of jointed specimens. Response Surface Method (RSM) was utilized to design experiments and investigate the effect of four joint parameters, namely joint roughness coefficient (JRC), bridge length (L), bridge angle (${\gamma}$), and joint inclination (${\theta}$). The interaction of these parameters on the uniaxial compressive strength (UCS) and deformation modulus of the blocks was investigated as well. The results indicated that an increase in joint roughness coefficient, bridge length and bridge angle increased compressive strength and deformation modulus. Moreover, increasing joint inclination decreased the two mechanical properties. The concept of 'interlocking cracks' which are mixed mode (shear-tensile cracks) was introduced. This type of cracks can happen in higher level of JRC. Initiation and propagation of this type of cracks reduces mechanical properties of sample before reaching its peak strength. The results of the Response Surface Methodology showed that the mutual interaction of the joint parameters had a significant influence on the compressive strength and deformation modulus.

극한지에서의 유체기계를 위한 플랜트 설비구조물의 비파괴 건전도 평가 (Strength Evaluation of the Plant Facility for Fluid Machinery Using Schmidt Hammer in Cold Regions)

  • 홍승서;김영석
    • 한국유체기계학회 논문집
    • /
    • 제19권3호
    • /
    • pp.25-28
    • /
    • 2016
  • The Schmidt hammer test is one of the best nondestructive tests to measure the strength without breaking structures, which has been used to measure the strength of concrete structures in a simple way at construction sites. However, the future research is needed to apply Schmidt hammer in cold regions. This study is intended to investigate the correlation between unconfined compression test result of the oil storage facilities foundation taken at the King Sejong Antarctic Station and Schmidt hammer test result at the sample-taking site. Also, the equation for uniaxial compression strength using Schmidt hammer rebound value is proposed.

시간경과에 따른 점토 지반의 개량 특성 (Improvable Characteristics of Clay Layers with Time Lapse)

  • 이준대
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.53-58
    • /
    • 2001
  • Constructions on the soft clay layer of low strength and high compression bring out many problems. Recent studies show that strength of the soft clay layer could be substantially improved by mixing quicklime. For the purpose, a series of uniaxial compression tests were performed, using quicklime, in order to analyze strength characteristics. The major test results are summarized following : When water content is 90%, the strength is observed to precipitously increase between 3~14 days, then, the extent slowly increase in relative terms. When water content is 130%, the strength is observed to precipitously increase up to 28 days. When the strength of water content 90% is compared to that of water content 130%, the initial strength of the former is higher than that of the latter. The analyses show that the improvement of soft clay layers can be realized by the mixture of both quicklime and sand, and by the mixture of quicklime only.

  • PDF

The effect of welding on the strength of aluminium stiffened plates subject to combined uniaxial compression and lateral pressure

  • Pedram, Masoud;Khedmati, Mohammad Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.39-59
    • /
    • 2014
  • Nowadays aluminum stiffened plates are one of the major constituents of the marine structures, especially high-speed vessels. On one hand, these structures are subject to various forms of loading in the harsh sea environment, like hydrostatic lateral pressures and in-plane compression. On the other hand, fusion welding is often used to assemble those panels. The common marine aluminum alloys in the both 5,000 and 6,000 series, however, lose a remarkable portion of their load carrying capacity due to welding. This paper presents the results of sophisticated finite-element investigations considering both geometrical and mechanical imperfections. The tested models were those proposed by the ultimate strength committee of $15^{th}$ ISSC. The presented data illuminates the effects of welding on the strength of aluminum plates under above-mentioned load conditions.

일축압축시험과 반복재하시험을 이용한 암석의 손상특성 분석 (Damage Characteristics of Rocks by Uniaxial Compression and Cyclic Loading-Unloading Test)

  • 정진영;장현식;장보안
    • 지질공학
    • /
    • 제31권2호
    • /
    • pp.149-163
    • /
    • 2021
  • 특성이 서로 다른 화강암, 대리암 그리고 사암에 대하여 일축압축시험과 반복재하시험을 실시하여 암석의 손상특성을 분석하였다. 일축압축시험으로 암석들의 강도, 탄성상수 그리고 손상기준응력을 결정하였고 이를 반복재하시험의 결과와 비교하였다. 반복재하시험으로 측정된 암석들의 평균 강도는 일축압축시험으로 측정된 값보다 약간 작거나 유사였다. 특히 강도가 높고 공극률이 낮은 암석들이 공극률이 매우 큰 연약한 암석들에 비해 반복하중에 의한 피로현상에 더 민감하였다. 반복 재하-제하 과정에서 발생되는 암석의 영구변형률은 암종에 따라 약간의 차이는 있으나 암석의 손상상태를 파악할 수 있는 유용한 도구로 활용할 수 있다는 것을 확인하였다. 특히 응력-누적영구변형률 곡선은 화강암과 대리암에 대하여 균열손상응력을 추정할 수 있는 가능성을 보여주었다. 시험과정에 미소파괴음을 측정하여 암석의 손상상태를 판단할 수 있는 펠리시티 비를 계산하였다. 공극이 매우 많고 연약한 사암은 미소파괴음의 방출이 매우 미약하여서 펠리시티 비의 계산에 어려움이 있었다. 반면 공극이 적고 취성의 특성을 보이는 화강암과 대리임의 경우 반복재하단계에서 계산된 펠리시티 비를 통하여 암석의 균열손상응력을 추정할 수 있는 가능성을 보여주었다. 향후 더 많은 시료와 다양한 종류의 암석을 대상으로 추가적인 시험을 진행하여 공통적인 결과를 도출한다면 유사한 조건을 갖는 암반의 손상과 변형 거동을 파악하는 데 도움이 될 수 있을 것으로 판단된다.

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

분자동력 학 시뮬레이션과 일축압축강도시험을 이용한 $\alpha$-quartz의 결정축에 따른 강도이방성 검토 (A study on anisotropic characteristics of axial strengths in $\alpha$-quartz by using molecular dynamics simulation and uniaxial compression test)

  • 서용석;이진국;;;정교철;김교원
    • 터널과지하공간
    • /
    • 제10권1호
    • /
    • pp.70-79
    • /
    • 2000
  • 입자수, 압력, 온도일정의 앙상블(NPT-ensemble) 분자동력학(MD) 시뮬레이션을 이용하여 300$^{\circ}$K에서 $\alpha$-quartz의 결정축에 따른 일축압축강도를 계산하고, 자연산 $\alpha$-quartz 단결정 코아를 제작하여 일축압축강도시험을 실시하였다. $\alpha$-quartz 단결정 코아에 대한 일축압축시험에서 측정된 결과에 의하면 재하 방향이 c축에 평행한 경우가 수직인 경우보다 높은 강도를 나타내지만, MD 시뮬레이션에서 계산된 완전무결함 $\alpha$-quartz의 경우 이와 반대의 결과를 보이고 있다. 두 경우 모두 재하방향에 따른 강도 이방성을 보이고 있으나, 그 이유는 서로 다르다. MD 시뮬레이션에 의해 계산된 무결함 $\alpha$-quartz의 강도 이방성은 결정구조의 차이에 기인하는 것으로 사료된다. 이에 반해 일축압축시험을 통해 측정된 $\alpha$-quartz의 강도 이방성은 결정성장과정에서 생기는 주상 미세결함에 의해 영향을 받는다.

  • PDF