• Title/Summary/Keyword: Uneven-aged forest

Search Result 9, Processing Time 0.019 seconds

Growth and Spatial Distribution Characteristics of Rhus javanica Populations Sowed on Cut-Slopes - Focusing on the Dae-Ji Mountain Case Study - (비탈면에 파종된 붉나무(Rhus javanica) 개체군의 생육 및 공간분포 특성 - 용인 대지산 사례지역을 중심으로 -)

  • Lim, Chae-young;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.39-49
    • /
    • 2015
  • This study was to evaluate the growth and spatial distribution characteristics of Rhus javanica population. The study was conducted between 2015 January and July at the cut-slope revegetation site in Dae-Ji Mountain. Seeds of native species were sowed on the disturbed cut-slope in 2002. There were 119 vascular plant species 55 families and 94 genera on the cut-slope. Compositae, Rosaceae, and Leguminosae plants were dominant species, which are pioneer species in dry and barren site. Canopy of trees covered 44.1% total area, which was 8.3% increase from 2008. Rhus javanica, main species, dominated all DBH classes except DBH >24cm. Albizzia julibrissin showed high frequency in the 6~17cm DBH class and Salix koreensis was abundant at >12cm. Elaeagnus umbellata, Corylus heterophylla var. heterophylla, Alnus sibirica, and Acer pictum were not observed. Rhus javanica population was the most frequently observed on the south facing cut-slope. The average DBH of Rhus javanica was $7.3({\pm}3.7)cm$ and the average height of them was $5.2({\pm}1.7)m$. Annual average DBH growth was 7.9mm/yr and the maximum growth(12.0mm/yr) was the $3^{rd}$ year. It decreased after $6^{th}$ years. Although Rhus javanica population in the Dae-Ji Mountain was a seed originated plantation, the forest had reverse J shape diameter frequency distribution. It indicated that the forest is uneven-aged forest. The Rhus javanica population was expected to sustain.

Spatial Genetic Structure of Allozyme Polymorphisms within a Small Population of Abies nephrolepis in Mt. Ohdae, South Korea

  • Lee, Seok-Woo;Yang, Byeong-Hoon;Lee, Kab Yeon;Song, Jeong Ho;Hur, Seong Doo;Lee, Jung Joo
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.2
    • /
    • pp.144-151
    • /
    • 2008
  • Using 8 isozyme polymorphic loci as gene markers, we studied the spatial distribution of genotypes in a naturally regenerated uneven-aged Eastern Siberian Fir (Abies nephrolepis Max.) stand (1ha, $100{\times}100m$) on Mt. Ohdae in northeastern South Korea. Gregorius' distograms and Moran's I correlograms revealed no evidence of significant genetic structure at three spatial classes of 5 m, 10 m, and 20 m. Extensive gene flow, due to the long distance dispersal of pollen and seeds in A. nephrolepis, may account for the lack of fine-scale spatial structure. Alternatives would be overlapping seed shadows caused by high densities of A. nephrolepis adult trees (160 trees/ha) and/or intraspecific competition resulting in extensive thinning within maternal half-sib groups.

Stand Structure of the Natural Broadleaved-Korean Pine Forests in Northeast China

  • Li, Fengri;Ma, Zhihai
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.5 s.162
    • /
    • pp.321-329
    • /
    • 2005
  • Based on the data representing four typical Korean pine forest types, the age structure, DBH distribution, species composition, and forking rule were systemically analyzed for old-growth Korean pine forest in Liangshui Nature Reserve, northeast China. The age structure of Korean pine trees was strongly uneven-aged with one dominated peak following normal distribution, and age of trees varied from 100 to 180 years within a stand. The DBH and height differences in same age class (20 years) varied from 28 cm~64 cm and 5 to 20 m, respectively. Many conifer and hard wood species, such as spruce, fir, costata birch, basswood, oak, and elm, were mixed with dominated trees of Korean pine. The canopy of the old-growth Korean pine forest can be divided into two layers, and differences of mean age and height between Layer I and Layer II were ranged 80~150 years and 7~13 m, respectively. The Weibull function was used to model the diameter distribution and performed well to describe size-class distribution either with a single peak in over-story canopy and inverse J-shape in under-story canopy for old-growth Korean pine stands. The forking height of Korean pine trees ranged from 16m to 24 m (mean 19.4 m) and tree age about 120 to 160 years old. The results will provide a scientific basis to protect and recover the ecosystem of natural old-growth Korean pine and also provide the model in management of Korean pine plantation.

Prediction of Old-Growth Development in Second-Growth Hardwood Forests using Computer Simulation (Computer Simulation을 이용(利用)한 이차활엽수림(二次闊葉樹林)의 노숙림(老熟林) 발달예측(發達豫測))

  • Choi, Jung-Kee
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.4
    • /
    • pp.502-512
    • /
    • 2000
  • Old-growth development for two different second-growth northern hardwood stands in the North America was evaluated with a computer simulation. The two sites compared were a representative 77 year old even-aged stand (Phelps) with heavy dominance by pole size classes, and an older uneven-aged stand with some existing old-growth structural features (Wildcat Creek). Each stand was evaluated in its natural progress toward old-growth structural conditions with stand structure, size distribution of live and dead trees, percent stand area in canopy gaps, and visual canopy profile and overhead view. The Phelps stand reached the minimum structural threshold for the old-growth stage after 74 years. Only 13 years was required for Wildcat Creek stand to reach the old-growth threshold. During the 45 years of simulation, the diameter distributions of both stands became broader and flatter. DBH distribution of dead trees had a general descending trend over the simulation in each stand. Gaps at Phelps were typically small after 45 years. Gap area at Wildcat Creek was somewhat more constant over the 45 years of simulation but a big gap was formed because of the death of several adjacent large trees.

  • PDF

Individual Tree Growth Models for Natural Mixed Forests in Changbai Mountains, Northeast China

  • Lu, Jun;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.160-169
    • /
    • 2007
  • The data used to develop distance-independent individual models for natural mixed forests were collected from 712 remeasured permanent sample plots (25,526 trees) of 10-year periodic from 1990 to 2000 in Baihe Forest Bureau of Changbai Mountains, northeast China. Based on analyzing relationship between diameter increment of individual trees with tree size, competitive status, and site condition, the diameter growth models for individual trees of 15 species growing in mixed-species uneven-aged forest stands, that have simple form, good predicting precision, and easily applicable, were developed using stepwise regression method. The main variables influencing on diameter increment of individual trees were tree size and competition, however, the site conditions were not significantly related with diameter increment. The tree size variables (lnDBH and $DBH^2$) were the most significant and important predictors of diameter growth existing in all 15 growth models. The diameter increment was directly proportional to tree diameter for each species. For the competitive factors in growth model, the relative diameter (RD), canopy closure (P), and the ratio of diameter of subject tree with maximum diameter (DDM) were contributed to the diameter increment at a certain extent. Other measures of stand density, such as basal area of stand (G) and stand density index (SDI), were not significantly influenced on diameter increment. Site factors, such as site index, slope and aspect were not important to diameter increment and excluded in the final models. The total variance explained by the final models of squared diameter increment ($R^2$) for all 15 species ranged from 35% to 72% and these results compared quit closely with those of Wykoff (1990) for mixed conifer stands. Using independent data set, validation measures were evaluated for predicting models of diameter increment developed in this study. The result indicated that the estimated precision was all greater than 94% and the models were suitable to describe diameter increment.

The Developmental Pattern of Succeeding Regeneration after the Application of Shelterwood System in a Thrift-Mature Pinus koraiensis Plantation (잣나무 장령식재림에서 산벌작업 적용 후의 후계림 발달 양상)

  • Kim, Ji Hong;Kang, Sung Kee
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.6
    • /
    • pp.597-604
    • /
    • 2008
  • Recognizing the necessity of the development of ecologically sound silvicultural system for the mature Korean pine (Pinus koraiensis), this study was carried out to examine the invasion and growth of understory vegetation after partial cutting. In 1997, the age class VII Korean pine forest in the Experimental Forest of Kangwon National University was opened up about 50% by modified shelterwood cutting with site preparation to induce succeeding regenerations. After 10 years, plenty of hardwood have come to the stand, forming understory vegetation. The abundance and composition of understory vegetation was periodically investigated in the ten $10m{\times}10m$ permanent sample plots, estimating importance values, species diversity index and the distribution of diameter and height of the understory vegetation. Encouraged by canopy opening, the coverage of understory reached perfect closure, composed of 22 tree species and 20 shrub species in 2007. Morus bombycis occupied 29.6% of the total importance value and Cornus controversa was 17.0%, followed by Styrax obassia, Quercus aliena, Quercus mongolica, Acer mono, and Pinus koraiensis. In the year of 2000 the species diversity was highest as 2.547 with 26 tree species and deceasing thereafter, showing 2.220 with 22 tree species in 2007. As understory layer was thickly covered and got grow bigger, some shade intolerant species were disappeared, lowering species diversity. In 2007 the biggest tree was a Quercus aliena with 11.3 cm of DBH and the tallest tree was a Cornus controversa with 9.8m of height. The frequency distribution of number of trees by diameter and height classes formed the inverted-J-shaped curve, supposed to be typical uneven-aged stand.

An Analysis of Growth Status and Soil Environment in Camellia japonica L. Forest at Jeolla-province Natural Monuments (동백나무 숲의 생육현황 및 토양환경 분석 - 전라도 지방 천연기념물 동백나무 숲을 중심으로 -)

  • Lee, Won-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, based on a natural monument forest research by Camellia japonica L. Forest appointed as a natural monument located environment and growth environment and the soil environment, Camellia japonica L. Forest soil in order to analyze effects of soil in Camellia japonica L. Forest correlation analysis the results can be summarized as follows: First, a natural monument Camellia japonica L. forest located on the foot of a mountain valley or within the stream, a lot of sunshine southeast, east, and south in the direction of the share due to external factors, making it a good, but, $15{\sim}30^{\circ}$ of distributed in the soil slopes in the slope there is a risk of loss are appearing. Second, the growth of the Status of Camellia japonica L. forest represents the distribution of the uneven-aged forest diameter class. but increases the density of the upper forest trees Camellia japonica L. occurred in lower saplings do not have growth. The width of crown diameter class caused a narrow oppressed tree, the average tree height in the 8.09m, camellia in common was lower than that of tree height, variation diameter class in the width of crown distribution severe low correlations were analyzed. Third, the natural monument Camellia japonica L. forest soil composition, properties of soil pH, etc. 10 entries were analyzed components of the soil. In summary analysis properties of soil, soil pH, calcium, organic matter, magnesium was good and potassium content was insufficient, nitrogen and phosphorus were excess. Fourth, the growth condition of Camellia japonica L. forest and soil physicochemical properties, the results of the correlation analysis. magnesium, calcium, nitrogen affects the growth of Camellia japonica L. forest. Other seven kinds of items showed no effect on growth. Current Status and Future Growth of Camellia japonica L. forest soil and soil environments as well as the relationship between, Camellia Forest Factors affecting the growth of the state in terms of long-term ecological research and conservation status of settled Camellia japonica L. forest research for building materials there will be continued.

Studies on the Estimation of Annual Tree Volume Growth for the Use as Basic Data on the Plan of Timber Supply and Demand in Korea - The Sub-sampling Oriented - (우리나라 목재수급계획(木材需給計劃)의 기초자료(基礎資料)로 활용(活用)키 위한 연간(年間) 임목성장량(林木成長量)의 추정(推定)에 관한 연구(硏究) - 부차추출법(副次抽出法)을 중심(中心)으로 -)

  • Lee, Jong Lak
    • Journal of Korean Society of Forest Science
    • /
    • v.61 no.1
    • /
    • pp.37-44
    • /
    • 1983
  • This study was to estimate total annual volume growth by the measurement of mean tree growth during the last 10 years. Surveyed Forest stand was the second block (20.80 ha.)of Kyung Hee University Forests located at San 58 and 64, Gaegok-Ri, Gapyung-Yeup, Gapyung-Goon, Kyunggi province in Korea. The stand was mainly composed of uneven-aged Pinus densiflora and the estimation of tree volume was conducted by taking the cores at the D.B.H. of the sample tree which was selected by sub-sampling. The results obtained were as follows; 1) The regression between the diameter (D) and diameter growth ($\hat{I}$) was $\hat{I}=0.5499+0.0101D$. 2) The estimated equation of confidence interval for the diameter growth was $S^2{\hat{I}}=0.00817(0.09538-0.00952D+0.00027D^2$) 3) The equation for estimating tree height (H) from diameter was $H=1.32376D^{0.77958}$ 4) The equation for estimating tree volume from diameter and height $V=0.0000622D^{1.6918}H^{1.1397}$ 5) Total annual tree volume growth was $5.4041m^3/ha$, and ranged from 5.6131 to $5.1984m^3/ha$. 6) Annual growth rate of total tree volume and its error were 8.8% and 3.9%, respectively. The annual volume growth per tree for any districts can be estimated by this method, and the annual volume growth will be successfully predicted. Because of poor forest growing stock in Korea, annual amount of allowable cut should not exceed annual tree volume growth for better forest management. Accordingly, annual amount of allowable cut should be either equal to or less than annual tree volume growth for the balanced establishment between timber supply and demand in Korea. Demand shortage will be substituted with imported timber. Such plans enable Korean Government to develop a better policy of forest resources management.

  • PDF

Relationship between Aboveground Biomass and Measures of Structure and Species Diversity in Quercus mongolica-Dominated Forest, Mt. Jeombong (점봉산 신갈나무군락의 생물종 다양성, 구조 다양성과 지상부 생물량의 관계에 대한 연구)

  • Jeong, Heon Mo;Jang, Inyoung;Hong, Seungbum
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.1022-1031
    • /
    • 2016
  • Relationships of standing biomass with biodiversity and structural diversity were examined in the Quercus mongolica-dominated forest in Mt. Jeombong, Gangwon-do. We examined the standing biomass of the Q. mongolia community ($311.1ton{\cdot}ha^{-1}$) from 2004 to 2013, and the observed major species were Q. mongoilca, Carpinus cordata, Tilia amurensis whose standing biomasses were $206.3ton{\cdot}ha^{-1}$ (66.3%), $36.9ton{\cdot}ha^{-1}$ (11.9%), and $30.6ton{\cdot}ha^{-1}$ (9.8%), respectively. Although the number of Q. mongolica individuals was very small compared with total density, the reason that Q. mongolica showed the most biomass than other species is due to greater average diameter at breast height (DBH) and the higher number of $DBH{\geq}50cm$ individuals. We calculated the range of Shannon index (H') and Shannon evenness (J') in the Q. mongolica community, and they were gradually increased in time, showing 2.015~2.166, 0.673~0.736, respectively. Their H' and J' showed positive linear relationships with their standing biomass. This indicates that the spatial distribution of the standing biomass in Q. mongoilca community becomes more homogeneous with time and this homogenization appears in various species in the community. In addition, we estimated biomass-species index (BS) and abundance-biomass-speciesdiversity (ABS) and they also showed gradual increase in time, ranging from 3.746 to 3.811 and from 4.781 to 5.028, respectively. Their indices showed positive linear relationships with the standing biomass. This can be explained from the observations of variations in standing biomass with tree diameters as the differences in the average standing biomass in the community have reduced gradually in time. Moreover, it is expected that increase in the structure diversity of the Q. mongoilca community enhances the efficiency in carbon sequestration and productivity, so the community can be developed to a more sustainable ecosystem with more abundant resources. Thus, applications of uneven-aged plantations with considerations of local ecological properties can be a very efficient reforestation method to ensure stable support of biodiversity and productivity.