Spatial Genetic Structure of Allozyme Polymorphisms within a Small Population of Abies nephrolepis in Mt. Ohdae, South Korea

  • Lee, Seok-Woo (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Yang, Byeong-Hoon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Kab Yeon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Song, Jeong Ho (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hur, Seong Doo (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jung Joo (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • Received : 2007.12.10
  • Accepted : 2008.01.14
  • Published : 2008.06.30

Abstract

Using 8 isozyme polymorphic loci as gene markers, we studied the spatial distribution of genotypes in a naturally regenerated uneven-aged Eastern Siberian Fir (Abies nephrolepis Max.) stand (1ha, $100{\times}100m$) on Mt. Ohdae in northeastern South Korea. Gregorius' distograms and Moran's I correlograms revealed no evidence of significant genetic structure at three spatial classes of 5 m, 10 m, and 20 m. Extensive gene flow, due to the long distance dispersal of pollen and seeds in A. nephrolepis, may account for the lack of fine-scale spatial structure. Alternatives would be overlapping seed shadows caused by high densities of A. nephrolepis adult trees (160 trees/ha) and/or intraspecific competition resulting in extensive thinning within maternal half-sib groups.

Keywords

References

  1. Berg, E.E. and Hamrick, J.L. 1995. Fine-scale genetic structure of a turkey oak forest. Evolution 49: 110-120 https://doi.org/10.2307/2410297
  2. Burns, R.M. and Honkala, B.H. (tech. cords). 1990. Silvics of North America: 1. Conifers. Agricultural Handbook 654, U.S. Department of Agriculture, Forest Service, Washington D.C
  3. Cheliak, W.M. and Pitel, J.A. 1984. Genetic control of allozyme variants in mature tissues of white spruce trees. Journal of Heredity 75: 34-40 https://doi.org/10.1093/oxfordjournals.jhered.a109861
  4. Chung, M.G., Chung, M.Y., Oh, G.S. and Epperson, B.K. 2000. Spatial genetic structure in a Neolitsea sericea population (Lauraceae). Heredity 85: 490-497 https://doi.org/10.1046/j.1365-2540.2000.00781.x
  5. Chung, M.Y., Nason, J., Chung, M.G., Kim, K.J., Park, C.W., Sun, B.Y. and Park, J.H. 2002. Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae). American Journal of Botany 89(8): 1229-1236 https://doi.org/10.3732/ajb.89.8.1229
  6. Conkle, M.T., Hodgskiss, P.D., Nunnally, L.B. and Hunter, S.C. 1982. Starch gel electrophoresis of pine seed: a laboratory manual. USDA Forest Service General Technical Report PSW-64. Pacific Southwest Forest and Range Experiment Station, Berkeley, California, USA
  7. Degen, B., Petit, R. and Kremer, A. 2001. SGS-Spatial Genetic Software: a computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. Journal of Heredity 92: 447-448 https://doi.org/10.1093/jhered/92.5.447
  8. Dewey, S.E. and Heywood, J.S. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42: 834-838 https://doi.org/10.2307/2408877
  9. Doligez, A. and Joly, H.I. 1997. Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity 79: 72-82 https://doi.org/10.1038/hdy.1997.124
  10. Epperson, B.K. 1992. Spatial structure of genetic variation within populations of forest trees. New Forests 6: 257-278 https://doi.org/10.1007/BF00120648
  11. Epperson, B.K. and Allard, R.W. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121: 369-377
  12. Epperson, B.K. and Chung, M.G.. 2001. Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). American Journal of Botany 88: 1006-1010. https://doi.org/10.2307/2657081
  13. Farjon, A. and Rushforth, K.D. 1989. A classification of Abies Miller (Pinaceae). Notes of the Royal Botanic Garden Edinburgh 46: 59-79
  14. Geburek, T. 1993. Are genes randomly distributed over space in mature populations of sugar maple (Acer saccharum Marsh.) Annals of Botany 71: 217-222 https://doi.org/10.1006/anbo.1993.1027
  15. Geburek, T. and Tripp-Knowles, P. 1994. Genetic architecture in bur oak, Quercus macrocarpa (Fagaceae), inferred by means of spatial autocorrelation analysis. Plant Systematics and Evolution 189: 63-74 https://doi.org/10.1007/BF00937578
  16. Gregorius, H.R. 1978. The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math Biosci 45: 253-271
  17. Hamrick, J.L., Godt, M.J.W. and Shermann-Broyles, S.L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95-124 https://doi.org/10.1007/BF00120641
  18. Hamrick, J.L., Murawski, D.A. and Nason, J.D. 1993. The influence of seed dispersal mechanisms on the genetic structure of tropical tree species. Vegetatio 107: 281-297
  19. Hamrick, J.L. and Nason, J.D. 1996. Consequences of dispersal in plants. pp. 203-236. In: Rhodes, O.E., Chesser, R.K., and Smith, M.H. (eds) Population Dynamics in Ecological Space and Time, University of Chicago Press, Chicago, IL
  20. Hardesty, B.D., Dick, C.W., Kremer, A., Hubbell, S. and Bermingham, E. 2005. Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed Neotropical tree, on Barro Colorado Island, Panama. Heredity 95: 290-297 https://doi.org/10.1038/sj.hdy.6800714
  21. Hong, K.N., Kwon, Y.J., Chung, J.M., Shin, C.H., Hong, Y.P. and Kang, B.Y. 2001. Spatial genetic structure at a Korean pine (Pinus koraiensis) stand on Mt. Jumbong in Korea based on isozyme studies. Jour. Korean For. Soc. 90: 43-54 (in Korean)
  22. IUCN, 2006. IUCN Red List of Threatened Species. www.iucnredlist.org
  23. Kang, B.Y. 2002. Spatial genetic structure, mating system and genetic conservation strategy in the natural populations of Korean fir (Abies koreana). Ph.D. Dissertation, Seoul National University (in Korean)
  24. Kim, J.W. and Yoon, J.K (eds). 1994. Forest Tree Seeds and Nursery Practice. Korea Forest Research Institute, Seoul, Korea (in Korean)
  25. Knowles, P. 1991. Spatial genetic structure within two natural stands of black spruce (Picea mariana (Mill.) B.S.P.). Silvae Genetica 40: 13-19
  26. Knowles, P., Perry, D.J. and Foster, H.A. 1992. Spatial genetic structure in two tamarack [Larix laricina (Du Roi) K. Kock] populations with differing establishment histories. Evolution 46: 572-576 https://doi.org/10.2307/2409875
  27. Ledig, F.T. 1986. Heterozygosity, heterosis, and fitness in outcrossing plants. pp. 77-104. In: Soule, M.E. (ed). Conservation Biology: the Science of Scarcity and Diversity. Sinauer Associates, Sunderland, Mass
  28. Ledig, F.T., Hodgskiss, P.D. and Johnson, D.R. 2006. Genetic diversity and seed production in Santa Lucia fir (Abies bracteata), a relict of the Miocene Broadleaved Evergreen Forest. Conservation Genetics 7: 783- 398, DOI 10.1007/s10592-005-9049-x
  29. Lee, S.W., Yang, B.H., Han, S.D., Song, J.H. and Lee, J.J. 2008. Genetic Variation of Natural Populations of Abies nephrolepis Max. in South Korea. Annals of Forest Science 62: 302p1-302p7, DOI: 10.1051 https://doi.org/10.1051/forest:2004088
  30. Lee, T.B. 1990. Dendrology, 4th edition, Hyang Moon Sa Publishing, Seoul (in Korean)
  31. Legendre, P. and Fortin, M.J. 1989. Spatial patterns and ecological analysis. Vegetatio 80: 107-138 https://doi.org/10.1007/BF00048036
  32. Liu, T.S. 1971. A Monograph of the Genus Abies, The Department of Forestry College of Agriculture, National Taiwan University
  33. Manly, B.F.J. 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hill, London
  34. Parker, K.C., Hamrick, J.L., Parker, A.J. and Nason, J.D. 2001. Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history. Heredity 87: 99-113 https://doi.org/10.1046/j.1365-2540.2001.00914.x
  35. Pascual, L., Garcia, F.J. and Perfectti, F. 1993. Inheritance of isozyme variations in seed tissues of Abies pinsapo Boiss. Silvae Genetica 42: 335-340
  36. Perry, D.J. and Knowles, P. 1991. Spatial genetic structure within three sugar maple (Acer saccharum Marsh.) stands. Heredity 66: 137-142 https://doi.org/10.1038/hdy.1991.17
  37. Ripley, B.D. 1981. Spatial Statistics. Probability and Mathematical Statistics Series. Wiley, New York
  38. Schnabel, A. and Hamrick, J.L. 1995. Understanding the population genetic structure of Gleditsia triacanthos L.: The scale and pattern of pollen gene flow. Evolution 49: 921-931 https://doi.org/10.2307/2410414
  39. Smouse, P.E. and Peakall, R. 1999. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82: 561-573 https://doi.org/10.1038/sj.hdy.6885180
  40. Sokal, R.R. and Wartenberg, D.E. 1983. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105: 219-237
  41. Streiff, R., Labbe, T., Bacilieri, R., Steinkellner, H., Glössl, J. and Kremer, A. 1998. Within-population genetic structure in Quercus robur L. and Quercus petraea(Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology 7: 317-328 https://doi.org/10.1046/j.1365-294X.1998.00360.x
  42. Suyama, Y., Tsumura, Y. and Ohba, K. 1992. Inheritance of isozyme variants and allozyme diversity of Abies mariesii in three isolated natural populations. Journal of the Japanese Forestry Society 74: 65-73
  43. Suyama, Y., Yoshimaru, H. and Tsumura, Y. 2000. Molecular phylogenetic position of Japanese Abies (Pinaceae) based on chloroplast DNA sequence. Molecular Phylogenetics and Evolution 16: 271-277 https://doi.org/10.1006/mpev.2000.0795
  44. Ueno, S., Tomaru, N., Yoshimaru, H., Manabe, T. and Yamamoto, S. 2000. Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Molecular Ecology 9: 647-656 https://doi.org/10.1046/j.1365-294x.2000.00891.x
  45. Weeden, N.F. and Wendel, J.F. 1989. Genetics of plant isozymes. pp. 46-72. In: Soltis, D.E. and Soltis, P.S. (eds) Isozymes in Plant Biology. Dioscorides Press, Portlad, Oregon
  46. Williams, C.G. and Savolainen, O. 1996. Inbreeding depression in conifers. Forest Science 41: 1-20
  47. Wright, S. 1978. Evolution and the Genetics of Populations, vol. 4, Variability Within and Among Natural Populations. University of Chicago Press, Chicago
  48. Xiang, Q.P., Xiang, Q.Y., Liston, A. and Zhang, X.C. 2004. Phylogenetic relationships in Abies (Pinaceae): evidence from PCR-RFLP of the nuclear ribosomal DNA internal transcribed spacer region
  49. Yeh, F.C. and Boyle, T. 1999. POPGENE Version 1.31, http://www.ualberta.ca/~fyeh/