• Title/Summary/Keyword: Undrained strength

Search Result 277, Processing Time 0.026 seconds

Effects of Anisotropic Consolidation on the Postcyclic Undrained Shear Strength of an Overconsolidated Clay (이방압밀이 반복하중을 받은 과압밀점토의 비배수전단강도에 미치는 영향)

  • Gang, Byeong-Hui;Yun, Hyeong-Seok;Park, Dong-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.37-48
    • /
    • 1998
  • The effects of consolidation stress history including consolidation stress ratio, OCR and cyclic loading with drainage on the undrained shear strength of cohesive soil were investig toted. The ratio$(S_u/\sigma'_{vc})ckou/(S_U/\sigma_{vc})cuv$ was observed to increase with increasing OCR. The equation (1) in this paper by Mayne(1980) for the undrained shear strength of the overconsolidated clay and the equation (4) by Yasuhara(1994), for the postcyclic shear strength were found to be relatively well applicable in the case of Kofonsolidated. It was also suggested that the value of the critical state pore pressure parameter As in these two equations for the in situ shear strength of lightly overconsolidated clay(OCR< 3) be obtained by the standard consolidating test.

  • PDF

A Experimental Study on Improvement of Marine Clay through the Electrolytic Leaching Effect in Aluminum Electrode (알루미늄 전극의 용출에 따른 해성점토의 개량에 관한 실험적 연구)

  • Kim, Jong-Yun;Yun, Myung-Suk;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1173-1180
    • /
    • 2006
  • In this study, aluminum electrodes were put in marine clay which was taken from the south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitates which were developed by electric decomposition in an electrode. To raise the cementation rate and reduce treatment time, high electric current (2.5A) was applied in each electrode at a semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using a static cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. In the results of electric decomposition in aluminum electrode, the measured shear strength was increased considerably compared to the initial shear strength because of the cementation effect between iron ions and soil particles.

  • PDF

The Characteristics of Undrained Shear Strength for Normally Consolidated Decomposed Weathered Mudstone Soil (정규압밀된 재성형 이암풍화토의 비배수 전단특성)

  • 김영수;김기영;문홍득
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.7-18
    • /
    • 2002
  • Generally, natural soils are affected by one-dimensional consolidation so that the behavior characteristic could be somewhat different from the isotropic consolidation specimen. But, due to experimental difficulties and the lack of equipment, the isotropic triaxial tests are mainly performed in most lab. tests. So it seems to be very effective if it is possible to predict pore water pressure and undrained shear strength in the $K_o$ state as the results of isotropic triaxial consolidation test. In this study, isotropic triaxial consolidation test and $K_o$ triaxial consolidation test were performed and we obtained parameters related to pore water pressure ratio using the Hyperbolic model. And then we predicted the behavior of pore water pressure that occurred in the $K_o$ state from the results obtained in the isotropic triaxial cosolidation test through the equation suggested by Lo(1969). It is possible to seize the validity of Lo(1969) equation. Also, considering undrained shear strength obtained from consolidation method in relation with water content, we find that consolidation method have an effect on undrained shear strength. Finally, using the Wroth(1984) equation that is based on the theory of critical state, undrained shear strength in the $K_o$ state was predicted from that of the isotropic triaxial consolidation test. The usefulness of the equation was verified by comparing the predicted value with experimental results.

Analysis on the Relationship of Geotechnical Strength Parameters in the Marine Clay (해성점토의 지반 강도정수 상관성 분석)

  • Heo, Yol;Kwon, Seonwuk;Lee, Cheokeun;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.33-43
    • /
    • 2010
  • The physical characteristics of the marine clay in the Korean Peninsula, specifically Pusan areas of the south coast of Korea, were previously studied and reliable data from harbor construction projects were used for the relationship analysis of geotechnical strength parameters. The sample of marine clay classified to ML, MH, CL, CH and ML-CL from USCS were included for the analysis while the samples classified to SC were excluded in order to raise the degree of data analysis. Geotechnical strength properties, such as undrained shear strength, sensitivity ratio, and effective friction angle were analyzed and evaluated using the data obtained from unconfined compression test, triaxial compression test and field vane test. Abnormal values were extracted through statistical analysis. Moreover, the reliability of the results was improved by performing the evaluation of disturbance. Linear regression analysis was used for the relationship analysis, between undrained shear strength and depth. The relationship equation between undrained shear strength and depth was derived from the analysis of unconfined and triaxial compression test data of samples obtained at same location. Consequently, The relationship between depth and undrained shear strength is $S_u=0.015148D+0.04624$ and the undrained shear strength derived from the triaxial compression test was estimated to be about 1.26 of derived from the unconfined compression test.

A Study on the Liquefaction Strength of Silt Containing Sands (실트를 포함하는 모래질 흙의 액상화강도에 관한 연구)

  • Hwang, Dae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.243-252
    • /
    • 1993
  • Undrained cyclic simple shear tests and undrained cyclic triaxial tests were performed on silt containing sand in order to investigate the effects of silt contents on the liquefaction strength and shear characteristics of the sand. From the view that the difference of liquefaction strength for different content of silt stems from dilatancy characteristics of the sand, stress-dilatancy relation of the sand was obtained from drained triaxial test in which the mean stress was kept constant. Considerations on liquefaction behaviors were made by comparing the drained and undrained behaviors of sands during static shear test. It is concluded that ${\lambda}$-value of the stress-dilatancy relation will be closely related to the liquefaction strength.

  • PDF

Estimation of Undrained Shear Strength of Very Soft Clay with the Slump Test (슬럼프 실험에 의한 초연약점토의 비배수전단강도 산정)

  • Noh, Tae-Kil;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.17-24
    • /
    • 2009
  • Undrained shear strength is estimated from laboratory tests generally, but the very soft or fluid material is generally incompatible with the test setup. In-situ methods require test to be accomplished at discrete time intervals, which does not provide a method to predict strength increment as a function of time for an ongoing project. Therefore, correlation between slump test value and undrained shear strength was derived through the regression analysis of slump test and laboratory vane shear test results. For the reliability of derived correlation equation statistical analysis using the t-distribution was performed and the comparison between the results of in-situ test and laboratory experiments demonstrated the applicability of the derived correlation.

Buckling analysis of piles in weak single-layered soil with consideration of geometric nonlinearities

  • Emina Hajdo;Emina Hadzalic;Adnan Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.187-200
    • /
    • 2024
  • This paper presents a numerical model for buckling analysis of slender piles, such as micropiles. The model incorporates geometric nonlinearities to provide enhanced accuracy and a more comprehensive representation of pile buckling behavior. Specifically, the pile is represented using geometrically nonlinear beams with the von Karman deformation measure. The lateral support provided by the surrounding soil is modeled using the spring approach, with the spring stiffness determined according to the undrained shear strength of the soil. The numerical model is tested across a wide range of pile slenderness ratios and undrained shear strengths of the surrounding soil. The numerical results are validated against analytical solutions. Furthermore, the influence of various pile bottom end boundary conditions on the critical buckling force is investigated. The implications of the obtained results are thoroughly discussed.

Borehole stability analysis in oil and gas drilling in undrained condition

  • Wei, Jian-Guang;Yan, Chuan-Liang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.553-567
    • /
    • 2014
  • Borehole instability during drilling process occurs frequently when drilling through shale formation. When a borehole is drilled in shale formation, the low permeability leads to an undrained loading condition. The pore pressure in the compressed area near the borehole may be higher than the initial pore pressure. However, the excess pore pressure caused by stress concentration was not considered in traditional borehole stability models. In this study, the calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel's excess pore pressure theory. Combined with Mohr-Coulumb strength criterion, the calculation model of collapse pressure of shale in undrained condition is obtained. Furthermore, the variation of excess pore pressure and effective stress on the borehole wall is analyzed, and the influence of Skempton's pore pressure parameter on collapse pressure is also analyzed. The excess pore pressure decreases with the increasing of drilling fluid density; the excess pore pressure and collapse pressure both increase with the increasing of Skempton's pore pressure parameter. The study results provide a reference for determining drilling fluid density when drilling in shale formation.

Effects of an Anisotropic Consolidation on the Undrained Shear Strength of a Normally Consolidated Clay (정규압밀점토의 비배수 전단강도에 대한 이방압밀효과)

  • 강병희;윤호창
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • In-situ soil is anisotropically consolidated at rest, and the coefficient of earth pressure at rest $K_0$ is dependent on the properties of soil and stress history. In order to estimate roughly the in-situ undrained shear strength of a $K_0$-anisotropically normally consolidated clay from isotropic consolidated undrained test, consolidated undrained shear testy with four different consolidation pressure ratios ($K={\sigma}'_{3c}/{\sigma}'_{1c}$) were performed and test results showed K-$\alpha$ relationship, representing the strength ratio $\alpha$ as ($S_u/{\sigma}'_{1c})_{CKU}=\alpha(S_u/{\sigma}'_{1c})_{CIU}$. Strength ratio u increases with increasing consolidation pressure ratio. And the angle of internal friction $\Phi'$and angle ratio $\Phi'_{CKU}/\Phi'_{CIU}/$ are increased with the increament of K-value.

  • PDF

Determination of Undrained Shear Strength In Clay from Cone Pressuremeter Test (Cone Pressuremeter를 이용한 점성토의 전단 강도 산정)

  • 이장덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.49-58
    • /
    • 2004
  • The cone pressuremeter test (CPM) is a new in-situ test which combines a standard cone penetration test with a pressuremeter. The cone pressuremeter tests in clay are presented and analyzed. An analytical solution of CPM incorporated non-linear soil behavior with no volume change is presented, and curve fitting technique is proposed to make use of both the loading and unloading portions of the pressuremeter test. The proposed method is accomplished by putting greater emphasis on the unloading portion. Twenty CPM tests are analyzed using the proposed method, and the derived undrained shear strength of soil is compared with other tests such as field vane tests and laboratory tests. The interpreted soil parameters had resonable values when compared to other in-situ and laboratory test results. The cone pressuremeter has provided reliable measures of undrained shear strength using curve fitting method.