• Title/Summary/Keyword: Underwater video camera

Search Result 17, Processing Time 0.032 seconds

Performance characteristics of a multi-directional underwater CCTV camera system to use in the artificial reef survey (인공어초 조사용 다방향 수중 CCTV 카메라 시스템의 성능 특성)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.2
    • /
    • pp.146-152
    • /
    • 2011
  • Underwater CCTV camera systems are increasingly replaced the traditional net approach of assessing the species, numbers and aggregation patterns of marine animals distributing around the artificial reefs installed in the inshore fishing grounds, in particular, in relation to the biological investigation of behavior and distribution patterns of target fishes. In relation to these needs, we developed a multi-directional underwater CCTV camera system to use in detecting and tracking marine animals in the artificial reef ground. The marine targets to be investigated were independently tracked by using a camera module toward the bottom and four camera modules installed in the interval of $90^{\circ}$ in horizontal plane and inclination of $45^{\circ}$ in vertical plane of the CCTV system without the overlap of video frames by each camera module. From the results of several field tests at sea, we believe that the developed multi-directional underwater CCTV camera system will contribute to a better understanding in evaluating the effect of artificial reefs installed in the inshore fishing grounds.

A Study on Underwater-Pipe Video Image Mosaicking using Digital Photogrammetry (수치사진측량을 이용한 수중 파이프 비디오 모자익 영상 제작에 관한 연구)

  • Kang, Jin-A;Kwon, Kwang-Seok;Kim, Byung-Guk;Oh, Yoon-Seuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.150-160
    • /
    • 2008
  • The present domestic underwater and ocean facilities management depends on analysis with the naked eye. This study performs quantitative analysis to improve conventional methods, analyze spatial situation of underwater facilities. This research is divided into two steps; underwater image distortion correction and image mosaic step. First, underwater image distortion correction step is for the production of underwater target, calculates the correction parameters, and then developed the method that convert the original image point to whose distortion is corrected. Second step is for the obtaining pipe images installed in the underwater, corrects the distortion, and then transforms a coordinates of the correction pipe image. After coordinate transformation, we make the mosaic image using the singularities. As a result, when we measure the distance between pipe and underwater ground and compare with calculation value on mosaic image, it is showed that RMSE is 0.3cm.

  • PDF

Estimation of the distribution density of snow crab, Chionoecetes opilio using a deep-sea underwater camera system attached on a towing sledge (예인식 심해용 비디오카메라를 이용한 대게의 서식밀도 추정)

  • An, Heui-Chun;Lee, Kyoung-Hoon;Bae, Jae-Hyun;Bae, Bong-Seong;Shin, Jong-Keun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.151-156
    • /
    • 2009
  • This study shows that the distribution density of snow crab, Chionoecetes opilio, was estimated using an underwater video monitoring system attached on the towing sledge. The field experiments were carried out at the coastal waters around Chuksan, East Sea, where ranged from 110 to 130m depth during September and October 2007. The sledge was towed for 40 minutes and the towing speed was controlled between 1.5 to 1.7 knot and each research areas were calculated to multiply towed distance by the detection width of the video monitoring system(1.2m), and then, distribution density of snow crab in each observations were estimated as a counted number of crab per 1,000$m^2$. The result shows that their survey, taken between two months, reflected similar results during survey period, and the maximum and mean distribution densities in September estimated to be 77.0(number/1,000$m^2$) and 19.9, respectively, and those of October were 36.0 and 21.8, respectively.

Study on Distortion Compensation of Underwater Archaeological Images Acquired through a Fisheye Lens and Practical Suggestions for Underwater Photography - A Case of Taean Mado Shipwreck No. 1 and No. 2 -

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.312-321
    • /
    • 2021
  • Underwater archaeology relies heavily on photography and video image recording during surveillances and excavations like ordinary archaeological studies on land. All underwater images suffer poor image quality and distortions due to poor visibility, low contrast and blur, caused by differences in refractive indices of water and air, properties of selected lenses and shapes of viewports. In the Yellow Sea (between mainland China and the Korean peninsula), the visibility underwater is far less than 1 m, typically in the range of 30 cm to 50 cm, on even a clear day, due to very high turbidity. For photographing 1 m x 1 m grids underwater, a very wide view angle (180°) fisheye lens with an 8 mm focal length is intentionally used despite unwanted severe barrel-shaped image distortion, even with a dome port camera housing. It is very difficult to map wide underwater archaeological excavation sites by combining severely distorted images. Development of practical compensation methods for distorted underwater images acquired through the fisheye lens is strongly desired. In this study, the source of image distortion in underwater photography is investigated. We have identified the source of image distortion as the mismatching, in optical axis and focal points, between dome port housing and fisheye lens. A practical image distortion compensation method, using customized image processing software, was explored and verified using archived underwater excavation images for effectiveness in underwater archaeological applications. To minimize unusable area due to severe distortion after distortion compensation, practical underwater photography guidelines are suggested.

A Study on the Luring of fish Shoals into the Fyke net by the Underwater Sound Emission (제주도 연안의 각망어업에 있어서 수중음악에 의한 어군의 유집에 관한 연구)

  • Abn, Jang-Yong;Seo, Du-Ok;Kim, Sam-Kon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.50-58
    • /
    • 1996
  • The authors carried out a field experiment to confirm the effect of underwater sound on the luring of fish schools in a setnet in the coast of Cheju Island. The effects of the acoustic emission on the luring of fish schools were observed using a manufectured underwater speaker in the setnet, and pure sound, of which frequency was 600Hz and the source level was 126dB, was emitted on and off at 5 minutes intervals in the set net during the night of ,July 29 and ,July 31. So we had recorded behavior of fish schools by the telesounder with two channel and shape of the setnet by underwater video camera and analyzed them. When the flood and ebb currents were around the setnet, the nets rised to the surface of water and it happened occasionaly at the stand of tide. Therefore, it was in the state that fish schools feel constraint to enter into the setnet, and was required a new design of the setnet stand up to strong tidal current. As the pure sound, of which frequency was 600Hz was emitted for the luring of fish schools in a setnet, the catch ammounts of fish, the young horce mackereWI'rachllrlls japonicus), was increased 4~6 times than not emitted.

  • PDF

Behaviour habitats of sailfin sandfish, Arctoscopus japonicus approaching toward the eastern coastal waters of Korea in the spawning season (한국 동해 연안에 내유한 산란기 도루묵, Arctoscopus japonicus의 행동습성)

  • An, Heui-Chun;Lee, Kyoung-Hoon;Lee, Sung-Il;Park, Hae-Hoon;Bae, Bong-Seong;Yang, Jae-Hyeong;Kim, Jong-Bin
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • Behaviour habitats of sailfin sandfish, Arctoscopus japonicus, one of the stock recovery species of Korea, were investigated when they were approaching toward the eastern coastal waters of Korea during spawning season. Underwater surveys were conducted in December, 2009 at Jug-island, Goseong, Gangwon-province to observe the behaviour of sailfin sandfish by underwater video camera and underwater camera, and the body characteristics of sailfin sandfish caught by gillnet were measured. It was observed that the species generally move in school but a few of individuals go out of the school to approach and dig into the sand bottom. Eggs of sailfin sandfish were shown in many cases to be attached to seaweed like Sargassum fulvellum and Zostera mairna. The females maintain its body in horizon and shake the body to breed eggs. It was also observed that the males spray sperm on the eggs attached on seaweed. Sailfin sandfish is assumed to make diurnal migration by moving to the shallow coast at night for spawning and fertilization, and moving out to the offshore at sunrise.

Visibility Enhancement of Underwater Stereo Images Using Depth Image (깊이 영상을 이용한 수중 스테레오 영상의 가시성 개선)

  • Shin, Hyoung-Chul;Kim, Sang-Hoon;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.684-694
    • /
    • 2012
  • In the underwater environment, light is absorbed and scattered by water and floating particles, which makes the underwater images suffer from color degradation and limited visibility. Physically, the amount of the scattered light transmitted to the image is proportional to the distance between the camera and the object. In this paper, the proposed visibility enhancement. method utilizes depth images to estimate the light transmission and the degradation factor by the scattered light. To recover the scatter-free images without unnatural artifacts, the proposed method normalizes the degradation factor based on the value of each pixel of the image. Finally, the scatter-free images are obtained by removing the scattered components on the image according to the estimated transmission. The proposed method also considers the color discrepancies of underwater stereo images so that the stereo images have the same color appearance after the visibility enhancement. The experimental results show that the proposed method improves the color contrast more than 5% to 14% depending on the experimental images.

A Study of Detecting Fish Robot Position using the Comparing Image Data Algorithm (이미지 비교 알고리즘을 이용한 물고기 로봇 위치 탐지 연구)

  • Musunuri, Yogendra Rao;Jeon, UYeol;Shin, KyooJae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1341-1344
    • /
    • 2015
  • In this paper, the designed fish robot is researched and developed for aquarium underwater robot. This paper is a study on how the outside technology merely to find the location of fish robots without specific sensor or internal devices. This model is designed to detect the position of the Robotic Fish in the Mat lab and Simulink. This intends to recognize the shape of the tank via a video device such as a camera or camcorder using an image processing technique to identify the location of the robotic fishes. Here, we are applied the two methods, one is Hom - Schunk Method and second one is newly proposed method that is the comparing image data algorithm. The Horn - Schunck Method is used to obtain the velocity for each pixel in the image and the comparing image data algorithm is proposed to obtain the position with comparing two video frames and assumes a constant velocity in each video frame.

Improving of the Fishing Gear and Development of the Automatic Operation System in the Anchovy Boat Seine- II Analysis of escaping behaviour of anchovy in relation to underwater light and towing flow velocity (기선권현망어업의 어구개량과 자동화조업시스템 개발- II 수중광 및 예망유속과 멸치의 도피반응 행동 분석)

  • 김용해;장충식;안영수;김형석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.78-84
    • /
    • 2001
  • Escape behaviour of the anchovy (Engralius japonica, total length 4-7cm) at the inside wing net and bag net in the anchovy boat seine was observed by underwater video camera in order to clarify the relationship between visual stimulus of the gear or relative water flow inside gear and reacting behaviour. The vertical attenuation coefficient of underwater illuminance in the offshore of Keoje island and Tongyoung was ranged from 0.24 to 1.03 and it could be affect visual range and visual contrast of the fishing gear. The relative water flow at the joint part between inside wing and bagnet while towing was 1.5 times higher than at the middle part of inside wing or fore part of bag net, but it was estimated under than maximum swimming speed of 4-7 cm anchovy. The mean escaping number of anchovy from end part of inside wing of 30 cm mesh to out side for a minute within visual range of video camera was 455 and anchovy swimming forward from bag net through flapper was 308. These results revealed anchovy could escape as voluntary response in spite of higher visual stimulus or higher water flow.

  • PDF

The kinematical Evaluation of National Team' s Butterfly Turn Motion (국가대표 접영선수의 방향전환동작 평가)

  • Back, Jin-Ho;Lee, Soon-Ho;Moon, Young-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.117-131
    • /
    • 2004
  • The foreign superior players and national team players' turning phase was measured, compared and analyzed to help the representative players improve the skill of turn. The underwater video camera used to analyze and evaluate the representative players' skill of turn in detail and the result is as follows. 1. The record for the phase of turn was similar to the rank of the last record. The improvement of the skill of turn was required because Korean players' record was lower than the foreign players' one. In case of 200m events the 1st turn was the fastest and it took more time as the turn is repeated. 2. It shows that the preparation phase and turing motion cause the difference between the players and within one player. 3. The horizontal movement of center of gravity moves to turning point slowly in the preparation phase, does not move nearly in the turning phase and increase again in the propulsion phase. Good record has short time for turn phase. The result means that the shorten the turning phase is the most important factor. Therefore the preparation for this is required. The vertical movement is maintained or increase a little and then move to from the turning phase. 4. The characteristic of horizontal velocity in center of gravity is that there is any big changes at the preparation phase, the faster velocity is found from the better record and the accelerating time is fast at the propulsion phasen. The wrong motion is made by not using the swimming velocity for fuming and waiting and more time is required by this. 5. The angle of knee when the player touch the turning point is 106.22-135.56 and the maximum angle of knee during the driving after the touch of tuning point is full extension. The size of maximum angle of knee did not match with the required time of propulsion phase. It seems that the individual difference is big when the players touch the turning point the angle of knee and the research for the individual angle which can reveal the maximum power should be carried out. The national team player's skill for the him is behind the foreign players' one and a lot of problems were found. It shows that the players could not practice the skill for turn during the training. The 1st reason for it is the various facilities like underwater window or analyzing equipment like underwater camera with which the coaches can teach and correct the players' detailed skill. It is need to evaluate the players' detailed skill exactly and correct it by objective data to complete the good skill in the future. In this regard, the investment for the facility is necessary.