• Title/Summary/Keyword: Underground Transmission Line

Search Result 129, Processing Time 0.023 seconds

Estimation of Carbonation and Service Life of Box Culvert for Power Transmission Line (박스형 전력구의 콘크리트 탄산화에 의한 잔존수명 예측)

  • Woo, Sang Kyun;Lee, Yun;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.116-121
    • /
    • 2012
  • The construction of underground structures such as box culverts for electric power transmission is increasing more and more, and the life extension of these structures is very important. Carbonation-induced corrosion in concrete may often occur in a high carbon dioxide environment. In this study, the risk of carbonation of two concrete box culverts in an urban area was evaluated by measuring the carbonation rate and concrete cover depth. Then, the carbonation-free service life at the depth of the steel was calculated, based on in situ information, by the Monte Carlo simulation. The service life of box culvert due to carbonation was estimated over 250 years via Monte Carlo simulation.

The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel (단층파쇄대 규모 및 조우 조건에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Kim, Kyoung-Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.403-415
    • /
    • 2014
  • Recently, the temperature rise in the summer due to climate change, power usage is increasing rapidly. As a result, power generation facilities have been newly completed and the need for ultra-high-voltage transmission line for power transmission of electricity to the urban area has increased. The mechanized tunnelling method using a shield TBM have an advantage that it can minimize vibrations transmitted to the ground and ground subsidence as compared with the conventional tunnelling method. Despite the popularity of shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Thus, in this study, the effect of fractured zone ahead of tunnel face on the mechanical behavior of the shield TBM cable tunnel is investigated. In addition, it is intended to compare the behavior characteristics of the fractured zone with continuous model and applying the interface elements. Tunnelling with shield TBM is simulated using 3D FEM. According to the change of the direction and magnitude of the fractured zone, Sectional forces such as axial force, shear force and bending moment are monitored and vertical displacement at the ground surface is measured. Based on the stability analysis with the results obtained from the numerical analysis, it is possible to predict fractured zone ahead of the shield TBM and ensure the stability of the tunnel structure.

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.

Development of deep learning algorithm for classification of disc cutter wear condition based on real-time measurement data (실시간 측정데이터 기반의 디스크커터 마모상태 판별 딥러닝 알고리즘 개발)

  • Ji Yun Lee;Byung Chul Yeo;Ho Young Jeong;Jung Joo Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • The power cable tunnels which are part of the underground transmission line project, are constructed using the shield TBM method. The disc cutter among the shield TBM components plays an important role in breaking rock mass. Efficient tunnel construction is possible only when appropriate replacement occurs as the wear limit is reached or damage such as uneven wear occurs. A study was conducted to determine the wear conditions of disc cutter using a deep learning algorithm based on real-time measurement data of wear and rotation speed. Based on the results of full-scaled tunnelling tests, it was confirmed that measurement data was obtained differently depending on the wear conditions of disc cutter. Using real-time measurement data, an algorithm was developed to determine disc cutter wear characteristics based on a convolutional neural network model. Distributional patterns of data can be learned through CNN filters, and the performance of the model that can classify uniform wear and uneven wear through these pattern features.

A Study on Quality and Economical Analysis of B-WLL and Optical Transmission Systems for Substituting M/W Relay System (M/W 중계장치 대체를 위한 B-WLL 및 광전송 장치의 품질과 경제성 분석에 대한 연구)

  • Suh Kyoung-Whoan;Choi Yong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.809-819
    • /
    • 2004
  • In this paper, in order to exclude the expansion of M/W relay frequency or its new frequency assignment possibly, we analyzed a possibility of substituting M/W system by B-WLL or optical fiber network regarding service quality and economical points. To define the target of service quality, pre-condition and analysis method for the selected media have been derived to compare each other. E1 transmission with BER 10$^{-1}$ was chosen as a reference capacity, and service distance was calculated f3r the selected media as a function of availability. Also from the economical point we considered 3 systems such as optical fiber, M/W, and B-WLL based upon basic system structure, and analyzed them for various line configurations of fiber optic and B-WLL according to service period, system capacity, transmission distance, and data rate. It was confirmed that B-WLL can provide quality of service with 99.999 % availability within 1.6 km cell radius, and for optical fiber substitution, the leased fiber conduit on an electric pole is more economical than M/W system irrespective of service period, but in case of directly digging for underground conduit, it turned out ineffective regardless of cabling duct types.

Improvement of Physical Condition Assessment in Water Mains (상수도 관로의 물리적 상태평가 기준 개선)

  • Kim, Ju-Hwan;Lee, Doo-Jin;Bae, Cheol-Ho;Ahn, Hyo-Won;Hwang, Jin-Soo;Choi, Doo-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1710-1715
    • /
    • 2010
  • Service life of water pipes buried in the underground is considerably affected from various factors such as environmental characteristics, pipe characteristics, operation and maintenance, etc. Therefore it is difficult to determine their service life as uniformly the same value assigned by related laws and ordinances. As a result, the service life should be determined by the technical judgement based on the assessment for the condition of water pipes. In this study, It was established that the methodology could predict present and future failure risk, and plan short and long-term strategies for replacement/rehabilitation through the assessment for the physical deterioration and economical values of buried water pipe. The methodology was applied for the verification and reliability to several sites selected in multi-regional transmission pipelines. The proposed method could helps to support reasonable and economical decision of rehabilitation/replacement in the present and future. To improve conventional assessment method of aged water pipes, affecting factors are simplified based on the statistical analysis results from the measured data in the field and the physical deterioration mechanism for better reliability. Also, the guide-line is developed to carry out the reasonal rehabilitation planning through water pipe condition assessment.

  • PDF

A Study on the Management of the Sectional Superficies for the Realization of 3D Cadastre (입체지적 구현을 위한 구분지상권의 관리에 관한 연구)

  • Kim, HyunYoung;Lih, BongJoo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.107-123
    • /
    • 2021
  • In recent years, due to the continuous density and urbanization of space, the expansion of awareness of rights, the need for landscape conservation, and the development of construction technology, the conventional flat land use has been deviated from the conventional flat land use, and the transmission line, urban railway, parking lot, communal district, underground shopping mall, pipeline, etc. Although 3D spatial activities are carried out in the form of 3D space, there are considerable difficulties in administration to manage the 3D use of land due to the inadequacy of related regulations. In this background, for the administration that can manage Sectional Superficies, which is a representative case of 3D spatial use of parcels, which is a registered unit of land, first, the law on the establishment and management of spatial information, and cadastral re-examination from the legal and institutional aspects Standardization of 3D space registration through amendments to the Special Act, etc. and the formation of consensus among related departments. Second, in technical and administrative aspects, the registration of Sectional Superficies based on cadastral survey results, establishment of a platform for integrated management of location and attribute data, and registration method was found to be in need of improvement. As suggested in this study, by registering and managing Sectional Superficies, it is possible to manage various 3D land use of not only ground space or surface space but also underground space. It is expected to be able to register and manage lot-based 3D land use efficiently.

Live Lines Tracing Method in Power Distribution System with 3-phase-4 wires (삼상 다중 접지 배전계통에서 활선로 추적 방법)

  • Zheng, Yan-peng;Byun, Hee-Jung;Shon, Sugoog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.559-562
    • /
    • 2017
  • In city, tracing of power transmission lines is difficult due to compound installation of overhead and underground lines, transposition, bad view caused by trees or big buildings. It is hard problem for electrical technician on site to trace power transformers or power lines to serve customers in 3 phase -4 wires power distribution systems. It is necessary that the correct and fast tracing method is required for load balancing among distribution lines. Old technology use to trace off-lines with high power impulse injection. Our proposed method use to trace live lines with very small power high frequency signal injection. Typical power transformers in the distribution system prevent propagating the higher frequency carrier signal. The proposed method uses the limited propagation ability to identify the power transformer to serve customers. Two end communication terminals are required to be synchronized between them for determination on electrically same phases. Challenging issue is to achieve synchronization without GPS providing synchronizing time. A novel power transformer and wire identification system is designed and implemented. The system consists of a transmitter and a receiver with power-line communication module. Some experiments are conducted to verify the theoretical concepts in a big commercial building. Also some simulations are done to help and understand the concepts by using MATLAB Simulink simulator.

  • PDF

Evaluation of Insulation Deterioration for the Development of SVM Algorithm to Diagnose OF Cable (OF 케이블 진단용 SVM 알고리즘 개발을 위한 절연열화 평가)

  • Kwak, Byeong Sub;Jun, Tae-Hyun;Kim, Ah-Reum;Park, Hyun-joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.263-273
    • /
    • 2019
  • South Korea's OF cable is reaching its expected design life of 30 years, and as a result, the risk of failure is increasing. Therefore, it is necessary to diagnose the long-term operating OF cables through accurate diagnosis at the right time to prevent the failure. Currently, the KEPCO periodically conducts DGA. However, the gas found in DGA is caused by oil deterioration as well as insulation paper. Therefore, the analysis of the degree of polymerization and furan compounds which is an evaluation of insulation paper considered to be the life of OF cables is required. In addition, the results of the evaluation of deterioration of insulation paper need to be checked for correlation with the results of DGA. In this study, DGA carried out through GC, the degree of polymerization was analyzed using an automatic viscometer, and HPLC was used to detect the furan compounds. In addition, the obtained results were applied to the SVM technique, which was recently introduced to determine abnormalities in OF cable. And the results which were accurate and reliable were obtained.