• Title/Summary/Keyword: Underground Structures

Search Result 976, Processing Time 0.029 seconds

Feasibility Study on a Damage Assessment of Underground Structures by Ground Shock Using the Fast Running Model (지중파에 의한 지하 구조물의 부재피해평가를 위한 고속해석모델 적용 가능성 연구)

  • Sung, Seung-Hun;Chong, Jin-Wung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.279-287
    • /
    • 2018
  • This study investigated applicability of the fast running model for damage assessment of underground structures by ground shock. For this reason, the fast running model that consists of two main models such as the ground shock generation and propagation model and the underground structural damage assessment model was developed. The ground shock generation and propagation model was programed using theoretical formula and empirical formula introduced in TM5-855-1(US army manual). The single degree of freedom model of structural components was utilized to predict structural dynamic displacements which are used as index to assess damage level of components. In order to confirm the feasibility of the developed fast running model, underground structural dynamic displacements estimated from the fast running model were compared to displacements obtained from the finite element analysis.

Assessment of London underground tube tunnels - investigation, monitoring and analysis

  • Wright, Peter
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.239-262
    • /
    • 2010
  • Tube Lines has carried out a "knowledge and investigation programme" on the deep tube tunnels comprising the Jubilee, Northern and Piccadilly lines, as required by the PPP contract with London Underground. Many of the tunnels have been in use for over 100 years, so this assessment was considered essential to the future safe functioning of the system. This programme has involved a number of generic investigations which guide the assessment methodology and the analysis of some 5,000 individual structures. A significant amount of investigation has been carried out, including ultrasonic thickness measurement, detection of brickwork laminations using radar, stress measurement using magnetic techniques, determination of soil parameters using CPT, pressuremeter and laboratory testing, installation of piezometers, material and tunnel segment testing, and trialling of remote photographic techniques for inspection of large tunnels and shafts. Vibrating wire, potentiometer, electro level, optical and fibre-optic monitoring has been used, and laser measurement and laser scanning has been employed to measure tunnel circularity. It is considered that there is scope for considerable improvements in non-destructive testing technology for structural assessment in particular, and some ideas are offered as a "wish-list". Assessment reports have now been produced for all assets forming Tube Lines' deep tube tunnel network. For assets which are non-compliant with London Underground standards, the risk to the operating railway has to be maintained as low as reasonably practicable (ALARP) using enhanced inspection and monitoring, or repair where required. Monitoring techniques have developed greatly during recent years and further advances will continue to support the economic whole life asset management of infrastructure networks.

A study on the applicability of under ground structure using steel tubular roof in Korean geotechnical condition (대구경강관을 이용한 지하구조물 축조공법의 국내지반 적용성 연구)

  • Lee, Young-Bock;Kim, Jeong-Yoon;Park, Inn-Joon;Kim, Kyong-Gon;Lee, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.401-409
    • /
    • 2003
  • Recently, the development of underground structures is to be inevitably necessary due to the increase in population and traffic volume that has caused to the limit of urban land use and the heavy traffic jams. Therefore, underground structures such as subway, underground shopping centers, lifeline facilities and so on, have been increasingly constructed, On the other hand, several social problems have occurred during construction, i.e., ground subsidence, noise, and vibration. Therefore, safer and more beneficial methods for underground construction are on the demand. In this research, N.T.R.(New Tubular Roof) method has been modified and utilized for solving those problems and overcoming the difficulties connected with the bored tunnel construction of large underground openings in unfavorable ground, often under the water table, and with overburdens that are too shallow to solve problems of stability using traditional methods. The N.T.R. method has been modified to suit for Korean geotechnical conditions, and was made up for the weak points-the water leakage from walls and tops, the maintenance and the lack of stability-of the conventional methods. This paper dealt with the features and the applicability of N.T.R. Method based on the results from numerical analysis and data from in-situ monitoring system.

  • PDF

Model tests for the behavior assessment of adjacent buildings in urban tunnelling (터널굴착에 타른 인접건물의 거동평가에 대한 모형실험연구)

  • Hwang, Eui-Suk;Kim, Hak-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.251-261
    • /
    • 2007
  • This study is to investigate the damage assessment of adjacent structures due to tunneling in urban environment. Model tests were carried out with two-story masonry building structures in various shapes and locations. The damage level of adjacent structures were very differently estimated in accordance with the shape ratio (L/h) of structures, construction stages, and various locations. The results of model tests were plotted on the damage level graphs in order to predict the direction of damage levels for the different types of structures (i.e. stiffness of structures, L/h). The progressive crack development mechanism at various construction stages was revealed through model tests and crack size indicated more conservative side of damage level on the damage level graph.

  • PDF

Derivation of risk factors according to accident cases related to subway structures

  • Park, Hyun Chul;Park, Young Gon;Pyeon, Mu Wook;Kim, hyun ki;Yoon, Hee Taek
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.329-341
    • /
    • 2021
  • This study derives the risk-Influence factors for subway structures, the basis for the transition from the current subway disaster recovery-oriented maintenance system to a preemptive disaster management system, to reduce risk factors for existing subway structures. To apply reasonable risk assessment techniques, risk influence factors for subway underground structures using statistical information(spatial information) and risk influence factors according to frequency of accidents were selected to derive the risk factors. The significant risk factors were verified through ground subsidence (SI: Subsidence Impact)-based correlation analysis. This process confirmed that the subsidence of the ground was a risk influence factor for the subway structure. The main result of this study is that derive the risk factors to improve the risk factors of subway structures due to the rapid increase in disaster risk factors. The derived risk factors that were expected to affect the depression around subway stations and track structures did not show a noticeable correlation, but the cause of this may be that there is no physical connection between them, but on the other hand, the accumulated data may not accurately record the surrounding depression. Accordingly, in order to evaluate the risk of depression around the station and track, more intensive observation and data accumulation around the structure are required.

Development of 3D Underground Utilities Processing and Partial Update Automation Technology - Focused on 3D Underground Geospatial Map - (3차원 지하시설물 가공 및 부분갱신 자동화 기술개발 - 지하공간통합지도 중심으로 -)

  • LEE, Min-Kyu;CHOI, Sung-Sik;JEON, Heung-Soo;KIM, Sung-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.1-15
    • /
    • 2020
  • As cities expand and underground utilities construction projects increase, there is an urgent need for a technology capable of analyzing the underground utilities network in 3D. Since 2015, 3D Underground Geospatial Map project, that has been integrating 15 types of underground information such as underground utilities, underground structures, and ground information, is in progress in S. Korea. However, the construction of 3D underground facilities is currently based on manual work and the logic for building a 3D model is very complicated. And it takes a lot of time and cost to process millions of large amounts of data per local governments. By presenting a framework on the processing and partial updating of the 3D underground utilities model, this paper aims to establish a plan to quickly build a 3D underground utility model at a minimum cost. The underground utilities processing and partial update automation technologies developed in this study are expected to be immediately applied to the 3D Underground Geospatial Map project.

A Study on the Seismic Response Formula for Improvement of Seismic Design Code of Water Treatment Underground Structures (수처리 지중구조물의 내진설계 기준 개선을 위한 지진 응답 제안식의 관한 연구)

  • Lee, Joung-Bae;Bae, Sang-Soo;Chung, Kwang-Mo;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • Generally it was known that member forces in the earthquake resistant design is lower than those in the general design. But it is not true in cases of water treatment underground structures, which is different in each case like water treatment plant, sedimentation basin, and utility-pipe conduit. Also, looking at the scale of earthquakes that have recently occurred in Korea, large-scale earthquakes are frequent, so when the magnitude of the design seismic force increases, it is necessary to investigate the seismic behavior of the water treatment underground structure and to deal with it. In this study the change rate of member forces was investigated by the change of design load factor (earthquake acceleration design criteria), earth depth, underground water level. The pseudo-static analysis and response displacement method was applied, and various analyzes were conducted depending on the ground water and soil depth. The proposed formula in this study will be efficient when the earthquake design code of water treatment underground structures is revised.

Interactions between pre-existing large pipelines and a new tunnel (기존 대구경 파이프라인과 신설터널간의 상호작용)

  • Jeong, Sun-Ah;Choi, Jung-In;Hong, Eun-Soo;Chun, Youn-Chul;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.175-188
    • /
    • 2009
  • When a new tunnel is excavated by the drill and blast method near pre-existing underground structures or tunnels due to the region restricted condition such as urban area, the ground will be relaxed by the excavation. In this case, issues can be created in terms of stability of pre-existing underground structures. One of major factors determining the stability of pre-existing underground structures can be a separation distance between pre-existing underground structures and a newly excavated tunnel. The region of ground relaxation defined by the plastic zone due to new excavation can be varied by separation distance. In this study, in other to estimate an influence of new tunnel excavation in terms of separation distance on the stability of pre-existing large pipelines, two-dimensional scaled model tests using plaster were performed for six models which have a different separation distance, The results show that based on the analysis of induced displacement during tunnel construction, the displacement decreases as the separation distance between large pipeline and new tunnel is increased until the distance is 2.5 times of pipeline diameter. Beyond this point, however, the displacement has become stabilized.

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

Analysis of the Earth Resistance for the Tower Footing of T/L (송전선로 철탑기초의 접지저항 해석)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.344-346
    • /
    • 2001
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. During a fault on any of the transmission lines, energization of the earth by supporting structures near the fault can result in large voltages appearing locally between the earth and the steel wall of any nearby pipeline. This paper presents the outline of the tower footings for the transmission lines having been used in KEPCO and analyzes the earth resistance for operation method of the tower footing, that is contact presence for the anchor and reinforcing rob of the tower and foundation presence of the underground wiring.

  • PDF