• Title/Summary/Keyword: Underground Excavation

Search Result 844, Processing Time 0.029 seconds

Introduction to Research Trend of Real-Time Measurement for Wear of TBM Disc Cutter (TBM 디스크커터의 마모량 실시간 계측을 위한 연구현황)

  • Min-Sung, Park;Min-Seok, Ju;Min-Sung, Cho;Jun, Lee;Jung-Joo, Kim;Hoyoung, Jeong
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.478-490
    • /
    • 2022
  • TBM disc cutter, which is the main cutting tool of tunnel boring machine (TBM), is replaced when it is excessively worn during the boring process. Disc cutters are usually monitored by workers at cutterhead chamber, and they check the status and wear amount of cutters. Because cutterhead chamber is usually in dangerous circumstance due to high pressure and instability of excavation surface, the measurement by manpower occasionally results in inaccuracy of measurement result. In order to overcome the limitations, the real-time disc cutter monitoring techniques have been developed in some foreign countries. This paper collected the current status of disc cutter monitoring system from the literature. Several types of sensors are used to measure the cutter wear, and it is believed that the collected information can be useful reference when similar domestic technologies are developed in the future.

3D Tunnel Face Modelling for Discontinuities Characterization: A Comparison of Lidar and Photogrammetry Methods (불연속성 특성화를 위한 3차원 터널 막장 모델링: 라이더 및 사진 측량 접근 방식의 비교 분석 중심으로)

  • Chuyen, Pham;Hyu-Soung, Shin
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.549-557
    • /
    • 2022
  • Tunnel face mapping involves the determination of rock discontinuities or weak rock conditions where extra support might be required. In this study, we investigated the application of Lidar scanning and photogrammetry to quantitatively characterize discontinuities of the rock mass on the tunnel face during excavation. The 3D models of tunnel faces generated by using these methods enable accurate and automatic discontinuity measurement to overcome the limitations of manual mapping. The results of this study show that both photogrammetry and Lidar can be used to reconstruct the 3D model of the tunnel face, although the photogrammetric 3D model is less detailed than its counterpart produced by Lidar. Given acceptable accuracy and cost-effectiveness, photogrammetry can be a fast, reliable, and low-cost alternative to Lidar for acquiring 3D models and determining rock discontinuities on tunnel faces.

Research Trend of Real-Time Measurement for Acting Force of TBM Disc Cutter (TBM 디스크커터의 실시간 하중 계측을 위한 연구현황)

  • Gyeongmin Ki;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.244-254
    • /
    • 2023
  • The disc cutter mounted on the Tunnel Boring Machine (TBM) is subjected to cutting forces in three dimensions during rock excavation process. It is widely known that the cutting forces increased with the strength of the rock mass, while the rolling force can be significantly increased when the disc cutter encounters abnormal rotation. Therefore, the cutting force acts on the disc cutter provides important information because it represents the conditions of the rock mass and the disc cutter. For these reasons, several studies have been conducted to measure the cutter forces in real-time. This paper introduces the current status of research on the cutter force measurement of TBM disc cutters, which has been reported in the literature. It is judged that this paper can be a useful reference material when similar technologies are developed in Korea in the future.

Compression Test of a TBM Thrust Jack for Validating Buckling Stability (TBM 추진잭의 좌굴 안정성 검토를 위한 압축시험)

  • Mun-Gyu Kim;Min-Gi Cho;Jung-Woo Cho;Han-Young Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.339-347
    • /
    • 2023
  • As the jacks provide a thrust force on the inclined surface, bending deformations by a side force occur in the pedestal and rod parts. This can induce disorder or degradation of the thrust module, buckling stability on the inclined compression condition should be clarified to secure the reliability of shield TBM. For analyzing the stability, a buckling testing method for hydraulic cylinder was investigated and compression testing system was installed. Before the test, a numerical analysis was conducted to check the stress concentration parts. The maximum allowable force was loaded on the cylinder specimen at 0 degree surface condition as a preliminary test. After the test, plastic deformations or hydraulic leakage was not observed. The static stability of it was verified at 0 degree condition.

Performance Verification and Reliability Test of Load Cell Gauge in Korea (국내 하중계 성능검증과 신뢰성 시험 연구)

  • Kim, Yeong-Bae;Park, Yeong-Bae;Lee, Seong-Won;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.103-114
    • /
    • 2023
  • Monitoring the site of an underground construction wall is crucial to confirm the stability of the supports and ground due to excavation. In particular, it is essential to maintain the accuracy of a load cell gauge, which identifies the load of the support transmitted from the excavated ground. However, research on verification methods and regulations that can identify the accuracy of load cell gauges at construction sites is inadequate, which is a problem as load cell gauges are installed without proper performance inspections. In this study, performance tests were conducted by a complete investigation of load cell gauges sold in Korea and comparing them with foreign products to determine defect causes. In addition, the criteria for selecting a load cell gauge were presented, and the results of this study were considered to help select a highly reliable load cell gauge.

The effect of in-situ stress parameters and metamorphism on the geomechanical and mineralogical behavior of tunnel rocks

  • Kadir Karaman
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.213-222
    • /
    • 2024
  • Determination of jointed rock mass properties plays a significant role in the design and construction of underground structures such as tunneling and mining. Rock mass classification systems such as Rock Mass Rating (RMR), Rock Mass Index (RMi), Rock Mass Quality (Q), and deformation modulus (Em) are determined from the jointed rock masses. However, parameters of jointed rock masses can be affected by the tunnel depth below the surface due to the effect of the in situ stresses. In addition, the geomechanical properties of rocks change due to the effect of metamorphism. Therefore, the main objective of this study is to apply correlation analysis to investigate the relationships between rock mass properties and some parameters related to the depth of the tunnel studied. For this purpose, the field work consisted of determining rock mass parameters in a tunnel alignment (~7.1 km) at varying depths from 21 m to 431 m below ground surface. At the same excavation depths, thirty-seven rock types were also sampled and tested in the laboratory. Correlations were made between vertical stress and depth, horizontal/vertical stress ratio (k) and depth, k and Em, k and RMi, k and point load index (PLI), k and Brazilian tensile strength (BTS), Em and uniaxial compressive strength (UCS), UCS and PLI, UCS and BTS. Relationships were significant (significance level=0.000) at the confidence interval of 95% (r = 0.77-0.88) between the data pairs for the rocks taken from depths greater than 166 m where the ratio of horizontal to vertical stress is between 0.6 and 1.2. The in-situ stress parameters affected rock mass properties as well as metamorphism which affected the geomechanical properties of rock materials by affecting the behavior of minerals and textures within rocks. This study revealed that in-situ stress parameters and metamorphism should be reviewed when tunnel studies are carried out.

A Preliminary Study on the Reused Channel-Type Lining Board with Corrosion-Damage (부식 강재 복공판의 재사용성 평가에 관한 기초적 연구)

  • Kim, In-Tae;Kim, Dong-Woo;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.170-179
    • /
    • 2009
  • Channel-type lining board(CLB) is a welded steel structure used in the field of open cut subway excavation and building basement construction. Lining board is generally installed at the underground environment which is exposed to corrosion factors such as humidity, temperature and corrosive gases. This study evaluates reusability of the corroded lining board by experimental and analytical method. Static loading tests were performed to know serviceability of corroded CLB after checking thickness loss of the used CLB parts. Strain of the plates and middle point deflection was measured simultaneously. According to experimental test results and comparison with numerical analysis, the thickness loss of the plates by corrosion makes more vertical displacements and stresses in members under the DB vehicle load considering impact factor. As a result, this paper is proposed a way to evaluate used and corroded CLB by checking the plates thickness and it makes construction engineers easy to know optimal time to replace their old CLBs with new one.

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

A re-appraisal of scoring items in state assessment of NATM tunnel considering influencing factors causing longitudinal cracks (종방향균열 영향인자 분석을 통한 NATM터널 정밀안전진단 상태평가 항목의 재검토)

  • Choo, Jin-Ho;Yoo, Chang-Kyoon;Oh, Young-Chul;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • State assessment of an operational tunnel is usually done by performing visual inspection and durability tests by following the detailed guideline for safety inspection (SI) and/ or precision inspection for safety and diagnosis (PISD). In this study, 12 NATM tunnels, which have been operational for more than 10 years, were inspected to figure out the cause of longitudinal cracks for the purpose of modifying the scoring items in the state assessment NATM tunnel related to the longitudinal crack and the thickness of concrete lining. All investigated tunnels were classified into four groups depending on the shape and usage of each tunnel. The causes of longitudinal crack occurrence were analyzed by investigating the correlations between the longitudinal crack and the following four factors: the patterns of ground excavation; construction state of primary support system; characteristics of material properties of the concrete lining; and thickness of lining which was obtained by Ground Penetration Radar (GPR) tests. It was found that influencing factors causing longitudinal cracks in the lining were closely related with the construction condition of the primary support system, i.e. shotcrete, rockbolt, and steel-rib; crack occurrences were not much affected by the excavation patterns. As for the properties of concrete lining materials, occurrence of the longitudinal crack was mostly affected by the following three items: w/c ratio; contents of cement; and strength of lining. When estimating the lining thickness of the concrete lining by GPR tests and taking thickness effect into account in the statement assessment, it was concluded that increase of the index score by an average of 0.03 (ranging from 0.01 up to 0.071) is needed; a more realistic way of state assessment should be proposed in which the increased index score caused by lack of lining thickness should be taken into account.

Study on the structure of the articulation jack and skin plate of the sharp curve section shield TBM in numerical analysis (수치해석을 통한 급곡선 구간 Shield TBM의 중절잭 및 스킨플레이트 구조에 관한 연구)

  • Kang, Sin-Hyun;Kim, Dong-Ho;Kim, Hun-Tae;Song, Seung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.421-435
    • /
    • 2017
  • Recently, due to the saturation of ground structures and the overpopulation of pipeline facilities requires to development of underground structures as an alternative to ground structures. Thus, mechanized tunnel construction of the shield TBM method has been increasing in order to prevent vibration and noise problems in construction of the NATM tunnel for the urban infrastructure construction. Tunnel construction plan for the tunnel line should be formed in a sharp curve to avoid building foundation and underground structures and it is inevitable to develop a shield TBM technology that suits the sharp curve tunnel construction. Therefore, this study is about the structural stability technology of the articulation jack, shield jack and skin plate for the shield TBM thrust in case of the mechanized tunnel construction that is a straight and sharp curve line. The construction case study and shield TBM operation principle are examined and analyzed by the theoretical approach. The torque of the cutter head, the thrust of the articulation jack and the shield jack, the amount of over cutting for curve is important respectively in shield TBM construction of straight and sharp curve line. In addition, it is very important to secure the stability of the skin plate structure to ensure the safety of the inside worker. This study examines the general structure and construction of the equipment, experimental simulation was carried out through numerical analysis to examine the main factors and structural stability of the skin plate structure. The structural stability of the skin plate was evaluated and optimizes the shape by comparing the loads of the articulation jack by selecting the virtual soil to be applied in a straight and sharp curve line construction. Since the present structure and operation method of the shield TBM type in domestic constructions are very similar, this study will help to develop the localized shield TBM technology for the new equipment and the vulnerability and stability review.