• Title/Summary/Keyword: Underground Area

Search Result 1,151, Processing Time 0.027 seconds

An Integrated Navigation System Combining INS and Ultrasonic-Speedometer to Overcome GPS-denied Area (GPS 음영 지역 극복을 위한 INS/초음파 속도계 결합 항법 시스템 설계)

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, La-Woo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • Recently, multi-sensor integration techniques have been actively studied to obtain reliable and accurate navigation solution in GPS (Global Positioning System)-denied harsh environments such as urban canyons, tunnels, and underground roads. In this paper, we propose a low-cost ultrasonic-speedometer utilizing the characteristics of the ultrasonic propagation. An efficient integrated INS (inertial navigation system)/ultrasonic-speedometer navigation system is also proposed to improve the accuracy of positioning in GPS-denied environments. To evaluate the proposed system, car experiments with field-collected measurements were performed. By the experiment results, it was confirmed that the proposed INS/ultrasonic-speedometer system bounds the positioning error growth effectively even though GPS signal is blocked more than 10 seconds and a low-cost MEMS IMU (micro electro mechanical systems inertial measurement unit) is utilized.

A Study on the Development of Model for Estimating the Thickness of Clay Layer of Soft Ground in the Nakdong River Estuary (낙동강 조간대 연약지반의 지역별 점성토층 두께 추정 모델 개발에 관한 연구)

  • Seongin, Ahn;Dong-Woo, Ryu
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.586-597
    • /
    • 2022
  • In this study, a model was developed for the estimating the locational thickness information of the upper clay layer to be used for the consolidation vulnerability evaluation in the Nakdong river estuary. To estimate ground layer thickness information, we developed four spatial estimation models using machine learning algorithms, which are RF (Random Forest), SVR (Support Vector Regression) and GPR (Gaussian Process Regression), and geostatistical technique such as Ordinary Kriging. Among the 4,712 borehole data in the study area collected for model development, 2,948 borehole data with an upper clay layer were used, and Pearson correlation coefficient and mean squared error were used to quantitatively evaluate the performance of the developed models. In addition, for qualitative evaluation, each model was used throughout the study area to estimate the information of the upper clay layer, and the thickness distribution characteristics of it were compared with each other.

A Case Study on the Cause Analysis of Subsidence in Limestone Mine Using LiDAR-Based Geometry Model (라이다 기반 정밀 형상 모델 활용 석회석 광산 지반침하 원인분석 사례연구)

  • Hwicheol Ko;Taewook Ha;Sang Won Jeong;Sunghyun Park;Seung-tae Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.126-140
    • /
    • 2023
  • In this study, the cause of subsidence in limestone mine was analyzed using a LiDAR-based geometry model. Using UAV and ground-based LiDAR systems, a precise geometry model was constructed for the subsidence surface and mine tunnel, and the results of on-site geological survey and rock mass classification were utilized. Through the geometry model, distribution of thickness of crown pillar and faults around the subsidence area, calculation of the volume of the subsidence area and subsidence deposit, and analysis of the subsidence surface inclination were conducted. Through these analyzes, the causes of ground subsidence were identified.

A Study on the Automated Algorithm for Legal Calculation of Weighted Average of Building Surface - Based on Rhino Grasshopper Using Digital Topographic Map Data - (건축물 지표면 가중평균 법정산정 자동화 알고리즘에 관한 연구 - 수치지형도 데이터를 이용한 Rhino Grasshopper 중심으로 -)

  • Choi, Se-Yeong;Song, Seok-Jae;Kim, Yong-Seong
    • Journal of KIBIM
    • /
    • v.13 no.2
    • /
    • pp.1-15
    • /
    • 2023
  • Since the 1960s, the Korean Peninsula, which consists of 77.4 of the country's land and mountains, has seen a surge in demand for buildings due to population concentration due to urbanization and industrialization. Since then, the development of slopes has been inevitable due to the concentration and expansion of the city's population. When building a building on a slope, it is important to set the height of the surface. In this case, the means of regulating buildings in construction-related laws, such as the building closure ratio, floor area ratio, number of floors and total floor area of buildings, have an overall effect on buildings through the height of the surface. In the Korean Building Act, the setting of the height of the ground affects the calculation of the building height limit standard and the calculation of the underground floor, and it takes a long time to calculate. Therefore, the time required for attempts to change various design plans of buildings increases. The purpose of this study is to speed up the time required to calculate the weighted average of the surface when constructing buildings on slopes. In addition, the existing calculation process allows various design attempts compared to the same time given.

Analysis of Dose by Items According to Act on Safety Control of Radiation Around Living Environment (생활주변방사선안전관리법 시행에 따른 항목별 선량 분석)

  • Jeong, Cheonsoo;Oh, Hyunji;Lee, Jieun;Jo, Sumin;Park, Sohyun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.377-381
    • /
    • 2013
  • The study attempted to analyze items presented in Act on safety control of radioactive rays around living environment, which has been recently enacted. The test items have been divided into cosmic rays, cosmic rays, terrestrial radiation, and byproduct, etc., and the selected locations for measurement included an airplane at 8000m in the air, mountainous area at 1000m above sea level, 15m-underground building, construction site, and seashore at 0m altitude. The test showed that, based on cosmic rays, plane at 8000m in the air had 4.91mSv/y of effective dose per year. The mountainous area at 1000m above sea level, which was chosen to measure cosmic rays and terrestrial radiation, was measured 0.35mSv higher than the seashore at 0m in altitude due to the effect of cosmic rays and terrestrial radiation from the greater height above sea level. The construction site, chosen as a location to measure byproduct, showed the highest value among the items with 6.66mSv, which is as 10times high as that of a completed building. The seashore at 0m in altitude had 5.96mSv, and, 15m-underground building, based on terrestrial radiation, was the lowest with 4.91mSv. This suggests that, despite the assumption that terrestrial radiation will have greater effect deeper underground, it did not affect inside the building significantly. This study showed that the items presented in Act on safety control of radioactive rays around living environment were not close to effective dose limit for radiation workers proposed by ICRP. However, they were between 4 and 7 times higher than that for general public. This suggests that there should be continuous research on and attention to Safe Management of Daily Surrounding Radiation Act, which is still at its beginning stage.

Experimental study on the ground subsidence due to the excavation of a shallow tunnel (경사지반에서 얕은터널의 굴착에 따른 지표침하에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.761-778
    • /
    • 2017
  • The need of the underground space for the infrastructures in urban area is increasing, and especially the demand for shallow tunnels increased drastically. It is very important that the shallow tunnel in the urban area should fulfill not only its own safety conditions but also the safety condition for the adjacent structures and the surrounding sub-structure. Most of the studies on the behavior of shallow tunnels concentrated only on their behaviors due to the local deformation of the tunnel, such as tunnel crown or tunnel sidewall. However, few studies have been performed for the behavior of the shallow tunnel due to the deformation of the entire tunnel. Therefore, in this study the behavior of the surrounding ground and the stability caused by deformation of the whole tunnel were studied. For that purpose, model tests were performed for the various ground surface slopes and the cover depth of the tunnel. The model tunnel (width 300 mm, height 200 mm) could be simulationally deformed in the vertical and horizontal direction. The model ground was built by using carbon rods of three types (4 mm, 6 mm, 8 mm), in various surface slopes and cover depth of the tunnel. The subsidence of ground surface, the load on the tunnel crown and the sidewall, and the transferred load near tunnel were measured. As results, the ground surface subsided above the tunnel, and its amount decreased as the distance from the tunnel increased. The influence of a tunnel ceased in a certain distance from the tunnel. At the inclined ground surface, the wider subsidence has been occurred. The loads on the crown and the sidewall were clearly visible, but there was no effect of the surface slope at a certain depth. The load transfer on the adjacent ground was larger when the cover depth (on the horizontal surface) was lager. The higher the level (on the inclined surface), the wider and smaller it appeared. On the shallow tunnel under inclined surface, the transfer of the ambient load on the tunnel sidewall (low side) was clearly visible.

Radon concentration measurement at general house in Pusan area (부산지역 일반주택에서의 라돈농도측정)

  • Im, In-Cheol
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.29-33
    • /
    • 2004
  • Until early 1980s we have lived without thinking that radon ruins our health. But, scientists knew truth that radon radioactive danger is bedeviling on indoor that we live for a long time. Specially, interest about effect that get in danger and injury for Radon and human body is inactive in our country. Recently, with awareness for Radon contamination, We inform about importance and danger of Radon in some station of the Seoul subway, indoor air of school facilities and We had interest with measure and manages. Usually, Radon gas emitted in base of building enters into indoor through building floor split windage back among radon or indoor air of radon daughter nucleus contamination is increased. Therefore, indoor radon concentration rises as there are a lot of windages between number pipe of top and bottom and base that enter crack from estrangement of the done building floor, underground to indoor. Thus, Radon enters into indoor through architecture resources water as well as, kitchen natural gas for choice etc., but more than about 85% from earth's crust emit. Danger and injury of health by Radon and Radon daughter nucleus that is indicated for cause of lung cancer incerases content of uranium of soil rises specially from inside pit of High area and a mine, cave, hermetical space with house. Safe sub-officer of radon concentration can not know and danger always exists large or small during. So, Important thing reduces danger of lung cancer by lowering concentration of Radon within house and building. Therefore, is thought that need general house Radon concentration measurement, measured Radon concentration monthly using Sintillator radon monitor. Study finding appeared high all underground market 1 year than the ground, and the winter appeared high than the summer. Specially, month that pass over 4pCi in house that United States Environmental Protection Agency advises appeared in underground, and appeared and know Radon exposure gravity by 4 months during 12 months. Therefore, Thinking that establishment and regulation of norm and preparation of reduction countermeasure about Radon are pressing feels, and inform result that measure Radon concentration.

  • PDF

Development of heat exchanger by the utilization of underground water. I - Design for plat fin tube - (지하수 이용을 위한 열교환기 개발. I - 냉각핀의 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger, parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. of The registration design : 0247164, by Korean Intellectual property Office). The fin of exchanger was design of the granulated surface for minimizing fouling factor and dew forms, and also placed parallel to the tube in order to minimized the resistance of flows. 1. Aloo-heat was designed to have 0.03m for inside diameter, 0.036m for outside diameter of tube, 0.0012m for thickness of fin and 0.032m for length of plat fin. 2. t was also designed to have 1.5248m2/m for outside area of heat transfer, 0.0942m2/m for inside area contacting hot liquid, and the ratio (Ra) was 16.1869. 3. Efficiency of the fin was 93 percentage when fin length was 0.032m, and the fin thickness satisfied equation $\frac{h{\rho}}{k}$< 0.2 when it was 0.0012m. 4. According to the performance test of Aloo-heat, as the temperature and rate increased, the heating value also increased, heating value was 504kJ/h·m and 6,048kJ/h·m when it was 60℃, 10 𝑙/min and 80℃, 40 𝑙/min respectively. 5. The test of heating value was confident, because correlation value(R2) was 0.9898 for the temperature and 0.9721 for flow rate of hot liquid, respectively.

INTEGRATION OF GPS AND PSEUDOLITE FOR SEAMLESS POSITIONING : Fundamental Verification Experiment and Results

  • Suh, Yong-Cheol;Konishi, Yusuke;Shibasaki, Ryosuke
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.04a
    • /
    • pp.77-84
    • /
    • 2002
  • The Global Positioning System, GPS technology has been widely used in positioning and attitude determination. It is well known that the accuracy, availability and reliability of the positioning results are heavily dependent on the number and geometric distribution of tracked GPS satellites. Because of this limitation, in some situations, such as in urban canyons, underground space or inside of buildings, it is really hard to navigate with GPS receiver. Therefore, in order to improve the performance of satellite-based positioning, the integration of GPS with the pseudolite technology has been proposed. With this pseudolite technology, it is expected that seamless positioning service can be provided in wider area without replacing existing GPS receivers. On the other hand, to adopt pseudolites at larger scale, it is necessary to verify how the pseudolites can complement the existing GPS-based positioning. In this paper the authors present the detail of experimental investigations and the results of the fundamental verification for seamless positioning using integration of GPS and pseudolite. This paper shows that the accuracy and efficiency of integrating GPS and pseudolite through the dynamic and static positioning experiment and discuss about the influence on GPS receiver by pseudolite signal. The experimental results indicate that the accuracy of the height component can indeed be significantly improved, to approximately the same level as the horizontal component.

  • PDF

Case Study of Geogrid Reinforcement in Runway of Inchon International Airport (지오그리드를 활용한 인천국제공항 활주로 보강사례)

  • 신은철;오영인;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.105-116
    • /
    • 1999
  • The Inchon International Airport site was formed by reclaimed soil from the sea. The average thickness of soft soil Is about 5 m and most of soft soils are normally consolidated or slightly over consolidated. There are many box culverts which are being constructed under the runways in the airfield. Sometimes, differential settlement can be occurred in the adjacent of box culvert or underground structures at the top layer of runway Soil compaction at very near to the structure is not easy all the time. Thus, one layer of geogrid was placed at the bottom of lean concrete layer for the concrete paved runway and at the middle of cement stabilized sub-base course layer for the asphalt paved runway. The length of geogrid reinforcement is 5m from the end of box culvert for both sides. The extended length of geogrid was 2m from the end of backfill soil in the box culvert. The tensile strength tests of geogrid were conducted for make sure the chemical compatibility with cement treated sub-base material. The location of geogrid placement for the concrete paved runway was evaluated. The construction damage to the geogrid could be occurred. Because the cement treated sub-base layer or lean concrete was spread by the finisher. The magnitude of tensile strength reduction was 1.16%~1.90% due to the construction damage and the ultimate tensile strength is maintained with the specification required. Total area of geogrid placement in this project is about 50,000 $m^2$.

  • PDF