DOI QR코드

DOI QR Code

A Study on the Development of Model for Estimating the Thickness of Clay Layer of Soft Ground in the Nakdong River Estuary

낙동강 조간대 연약지반의 지역별 점성토층 두께 추정 모델 개발에 관한 연구

  • Seongin, Ahn (Mineral Exploration and Mining Research Center, Korea Institute of Geoscience & Mineral Resources (KIGAM)) ;
  • Dong-Woo, Ryu (Mineral Exploration and Mining Research Center, Korea Institute of Geoscience & Mineral Resources (KIGAM))
  • 안성인 (한국지질자원연구원 광물자원연구본부 자원탐사개발연구센터 ) ;
  • 류동우 (한국지질자원연구원 광물자원연구본부 자원탐사개발연구센터)
  • Received : 2022.12.19
  • Accepted : 2022.12.26
  • Published : 2022.12.31

Abstract

In this study, a model was developed for the estimating the locational thickness information of the upper clay layer to be used for the consolidation vulnerability evaluation in the Nakdong river estuary. To estimate ground layer thickness information, we developed four spatial estimation models using machine learning algorithms, which are RF (Random Forest), SVR (Support Vector Regression) and GPR (Gaussian Process Regression), and geostatistical technique such as Ordinary Kriging. Among the 4,712 borehole data in the study area collected for model development, 2,948 borehole data with an upper clay layer were used, and Pearson correlation coefficient and mean squared error were used to quantitatively evaluate the performance of the developed models. In addition, for qualitative evaluation, each model was used throughout the study area to estimate the information of the upper clay layer, and the thickness distribution characteristics of it were compared with each other.

본 연구에서는 국내 주요 연약지반으로 알려진 낙동강 조간대 지역의 압밀침하 취약성 평가에 활용할 상부 점성토층의 위치별 두께 정보를 추정할 수 있는 모델을 개발하였다. 두께정보 추정을 위하여 기계학습 알고리즘인 RF (Random Forest), SVR (Support Vector Regression), GPR (Gaussian Process Regression)과 지구통계기법인 정규크리깅(Ordinary Kriging)을 이용한 4가지 공간추정 모델을 개발하고 상호 비교하였다. 모델 개발을 위하여 수집한 연구지역의 시추공 자료 4,712개 중 상부점성토층이 존재하는 2,948개의 시추공 자료를 사용하였으며, 개발된 모델들의 성능을 정량적으로 평가하기 위하여 피어슨(Pearson) 상관계수와 오차제곱평균(mean squared error)을 사용하였다. 또한, 정성적 평가를 위하여 연구지역 전역에 상부점성토층의 두께를 추정하여 점성토층의 지역별 분포 특성을 상호 비교하였다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 기본사업 '도시복합지질재난 능동 대응 스마트 통합솔루션 기술 개발' 과제(GP2021-007)의 일환으로 수행되었습니다. 또한, 시추공 정보를 제공해 준 국토지반정보 통합DB센터에 감사드립니다.

References

  1. Alpaydin, E., 2020, Introduction to machine learning. MIT
  2. Breiman, L., 2001, Random forests. Machine Learning. 45, 5-32. https://doi.org/10.1023/A:1010933404324
  3. Calcagno, P., Chiles, J. P., Courrioux, G., and Guillen, A., 2008. Geological modelling from field data and geological knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1-4), 147-157. https://doi.org/10.1016/j.pepi.2008.06.013
  4. Chung, S.G., Jang, W.Y., Ninjgarav, E., and Ryu, C.K., 2006, Compissibility Characteristics Associated with Depositional Environment of Pusan Clay in the Nakdong River Estuary. Journal of the Korean Geotechnical Society, 22(12), 57-65. https://doi.org/10.7843/KGS.2006.22.12.57
  5. Cortes, C., and Vapnik, V., 1995, Support-vector networks. Machine learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
  6. Cui, T., Pagendam, D.E., and Gilfedder, M., 2021, Gaussian process machine learning and Kriging for groundwater salinity interpolation. Environmental Modelling & Software, 144, 105170.
  7. Erickson, C.B., Ankenman, B.E., and Sanchez, S.M., 2018, Comparison of Gaussian process modeling software. European Journal of Operational Research, 266(1), 179-192. https://doi.org/10.1016/j.ejor.2017.10.002
  8. Goovaerts, P., 1997, Geostatistics for Natural Resources Evaluation. Oxford University Press.
  9. Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G.B.M., and Graler, B., 2018, Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6.
  10. Ho, T.K., 1998, The random subspace method for constructing decision forests. IEEE TPAMI, 20, 832-844. https://doi.org/10.1109/34.709601
  11. Isaaks, E.H. and Srivastava, R.M., 1989, An Introduction to Applied Geostatistics. Oxford University
  12. Journel, A.G. and Kyriakidis, P.C., 2004, Evaluation of mineral reserves: a simulation approach. Oxford University
  13. Kim, H.R., Yu, S.H., Yun, S.T., Kim, K.H., Lee, G.T., Lee, J.H., Heo, C.H., and Ryu, D.W., 2022, Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data. Economic and Environmental Geology, 55(4), 353-366.
  14. Malkomes, G., Schaff, C., and Garnett, R., 2016, Bayesian optimization for automated model selection. Advances in Neural Information Processing Systems, 29.
  15. MATLAB. 2022. 9.12.0.1884302(R2022a). Natick, Massachusetts: The MathWorks Inc.
  16. MOLIT (Ministry of Land, Infrastructure and Transport), 2015, Guidance manual on subsidence control, 67p.
  17. Muller, S., Schuler, L., Zech, A., and HeBe, F., 2022, GSTools v1.3: a toolbox for geostatistical modelling in Python. Geoscientific Model Development, 15, 3161-3182. https://doi.org/10.5194/gmd-15-3161-2022
  18. Smirnoff, A., Boisvert, E., and Paradis, S. J., 2008, Support vector machine for 3D modelling from sparse geological information of various origins. Computers and Geosciences, 34(2), 127-143. https://doi.org/10.1016/j.cageo.2006.12.008
  19. Suh, J.W., Ryu, D.W., and Yum, B.W., 2020, Logistic Regression and GIS based Urban Ground Sink Susceptibility Assessment Considering Soil Particle Loss. Tunnel and Underground Space, 30(2), 149-163. https://doi.org/10.7474/TUS.2020.30.2.149
  20. Wellmann, F. and Caumon, G., 2018, 3-D Structural geological models: Concepts, methods, and uncertainties. Advances in Geophysics, 59, 1-121. https://doi.org/10.1016/bs.agph.2018.09.001
  21. Williams, C.K. and Rasmussen, C.E., 2006, Gaussian processes for machine learning. MIT press.
  22. Yang, J.H. and Cho, K.R. 2011., Geomorphological Development of Embayment Area at the estuary of Nakdong River. Journal of The Korean Association of Regional Geographers, 17(6), 649-665.
  23. Zhou, F., Li, M., Huang, C., Liang, H., Liu, Y., Zhang, J., Wang, B., and Hao, M., 2022, Lithology-Based 3D Modeling of Urban Geological Attributes and Their Engineering Application: A Case Study of Guang'an City, SW China. Frontiers Earth Science, 10, 918285.