Acknowledgement
본 연구는 한국지질자원연구원 기본사업 '도시복합지질재난 능동 대응 스마트 통합솔루션 기술 개발' 과제(GP2021-007)의 일환으로 수행되었습니다. 또한, 시추공 정보를 제공해 준 국토지반정보 통합DB센터에 감사드립니다.
References
- Alpaydin, E., 2020, Introduction to machine learning. MIT
- Breiman, L., 2001, Random forests. Machine Learning. 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Calcagno, P., Chiles, J. P., Courrioux, G., and Guillen, A., 2008. Geological modelling from field data and geological knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1-4), 147-157. https://doi.org/10.1016/j.pepi.2008.06.013
- Chung, S.G., Jang, W.Y., Ninjgarav, E., and Ryu, C.K., 2006, Compissibility Characteristics Associated with Depositional Environment of Pusan Clay in the Nakdong River Estuary. Journal of the Korean Geotechnical Society, 22(12), 57-65. https://doi.org/10.7843/KGS.2006.22.12.57
- Cortes, C., and Vapnik, V., 1995, Support-vector networks. Machine learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
- Cui, T., Pagendam, D.E., and Gilfedder, M., 2021, Gaussian process machine learning and Kriging for groundwater salinity interpolation. Environmental Modelling & Software, 144, 105170.
- Erickson, C.B., Ankenman, B.E., and Sanchez, S.M., 2018, Comparison of Gaussian process modeling software. European Journal of Operational Research, 266(1), 179-192. https://doi.org/10.1016/j.ejor.2017.10.002
- Goovaerts, P., 1997, Geostatistics for Natural Resources Evaluation. Oxford University Press.
- Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G.B.M., and Graler, B., 2018, Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6.
- Ho, T.K., 1998, The random subspace method for constructing decision forests. IEEE TPAMI, 20, 832-844. https://doi.org/10.1109/34.709601
- Isaaks, E.H. and Srivastava, R.M., 1989, An Introduction to Applied Geostatistics. Oxford University
- Journel, A.G. and Kyriakidis, P.C., 2004, Evaluation of mineral reserves: a simulation approach. Oxford University
- Kim, H.R., Yu, S.H., Yun, S.T., Kim, K.H., Lee, G.T., Lee, J.H., Heo, C.H., and Ryu, D.W., 2022, Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data. Economic and Environmental Geology, 55(4), 353-366.
- Malkomes, G., Schaff, C., and Garnett, R., 2016, Bayesian optimization for automated model selection. Advances in Neural Information Processing Systems, 29.
- MATLAB. 2022. 9.12.0.1884302(R2022a). Natick, Massachusetts: The MathWorks Inc.
- MOLIT (Ministry of Land, Infrastructure and Transport), 2015, Guidance manual on subsidence control, 67p.
- Muller, S., Schuler, L., Zech, A., and HeBe, F., 2022, GSTools v1.3: a toolbox for geostatistical modelling in Python. Geoscientific Model Development, 15, 3161-3182. https://doi.org/10.5194/gmd-15-3161-2022
- Smirnoff, A., Boisvert, E., and Paradis, S. J., 2008, Support vector machine for 3D modelling from sparse geological information of various origins. Computers and Geosciences, 34(2), 127-143. https://doi.org/10.1016/j.cageo.2006.12.008
- Suh, J.W., Ryu, D.W., and Yum, B.W., 2020, Logistic Regression and GIS based Urban Ground Sink Susceptibility Assessment Considering Soil Particle Loss. Tunnel and Underground Space, 30(2), 149-163. https://doi.org/10.7474/TUS.2020.30.2.149
- Wellmann, F. and Caumon, G., 2018, 3-D Structural geological models: Concepts, methods, and uncertainties. Advances in Geophysics, 59, 1-121. https://doi.org/10.1016/bs.agph.2018.09.001
- Williams, C.K. and Rasmussen, C.E., 2006, Gaussian processes for machine learning. MIT press.
- Yang, J.H. and Cho, K.R. 2011., Geomorphological Development of Embayment Area at the estuary of Nakdong River. Journal of The Korean Association of Regional Geographers, 17(6), 649-665.
- Zhou, F., Li, M., Huang, C., Liang, H., Liu, Y., Zhang, J., Wang, B., and Hao, M., 2022, Lithology-Based 3D Modeling of Urban Geological Attributes and Their Engineering Application: A Case Study of Guang'an City, SW China. Frontiers Earth Science, 10, 918285.