• Title/Summary/Keyword: Underground Area

Search Result 1,151, Processing Time 0.029 seconds

Detection of Limesilicate Cavities by 3-D Electrical Resistivity Survey (3차원 전기비저항탐사에 의한 석회규산염암의 공동탐지)

  • Park, Sam-Gyu;Kim, Chang-Ryol;Son, Jeong-Sul;Kim, Jung-Ho;Yi, Myeong-Jong;Cho, Seong-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.597-605
    • /
    • 2006
  • In this study, we examined the applicability of 3-D electrical resistivity survey to detect underground cavities within ground subsidence area at the field test site, located at Yongweol-ri, Muan-gun in Korea. Underground cavities are widely present within the limesilicate bedrock overlain by the alluvial deposits in the area of the test site where the ground subsidences have occurred in the past. The limesilicate cavities are mostly filled with groundwater and clays in the test site. Thus, cavities have low electrical resistivity compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity correspond to the zones of the cavities identified in the boreholes at the test site, and that the 3-D electrical resistivity survey is very effective to detect underground cavities.

Analysis of the Pathways and Travel Times for Groundwater in Volcanic Rock Using 3D Fracture Network (화산암질 암반에서 3차원 균열망 모델을 이용한 지하수 유동경로 및 유동시간 해석)

  • 박병윤;김경수;김천수;배대석;이희근
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.42-58
    • /
    • 2001
  • In order to protect the environment from waste disposal activities, the prediction of the flux and flow paths of the contaminants from underground facilities should be assessed as accurately as possible. Especially, the prediction of the pathways and travel times of the nuclides from high level radioactive wastes in a deep repository to biosphere is one of the primary tasks for assessing the ultimate safety and performance of the repository. Since the contaminants are mainly transported with groundwater along the discontinuities developed within rock mass, the characteristics of groundwater flow through discontinuities is important for the prediction of contaminant fates as well as safety assessment of a repository. In this study, the actual fracture network could be effectively generated based on in situ data by separating geometric parameter and hydraulic parameter. The calculated anisotropic hydraulic conductivity was applied to a 3D porous medium model to calculate the path flow and travel time of the large studied area with the consideration of the complex topology in the area. Using the model, the pathways and travel times for groundwater were analyzed. From this study, it was concluded that the suggested techniques and procedures for predicting the pathways and travel times of groundwater from underground facilities to biosphere is acceptable and those can be applied to the safety assessment of a repository for radioactive wastes.

  • PDF

An Analysis of Safety Zone Appropriateness of Urban Railway Box Structures by Adjacent Excavation Using Machine Learning Technique (머신러닝 기법을 적용한 인접굴착에 따른 도시철도 박스구조물의 안전영역 적정성 분석)

  • Jung-Youl Choi;Jae-Seung Lee;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.669-676
    • /
    • 2023
  • This study analyzed the relationship between major parameters and numerical analysis results according to various excavations conducted around the urban railway, application of machine learning techniques and verified the scope of influence of the adjacent excavation on the existing urban railway box structure and the appropriateness of the safety area. This study targeted the actual negotiated adjacent excavation works and box structures around the urban railway, and the analysis was conducted on the most representative two-line box structures. The analysis confirmed that the difference in depth of urban railway, excavation depth of adjacent excavation, and depth of underground water level are important parameters, and the difference in excavation depth of adjacent excavation is the parameter that affects the behavior of underground box structures and is an important requirement for setting safety areas. In particular, the deeper the depth of the adjacent excavation work, the greater the effect on the deflection of the underground box structure, and the horizontal separation distance, one of the important requirements for determining the management grade of the existing adjacent excavation work, is relatively small.

A Study on the DC Resistivity Method to Image the Underground Structure Beneath River or Lake Bottom (하저 지반특성 규명을 위한 수상 전기비저항 탐사에 관한 연구)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Choi Seong-Jun;Lee Seoung Kon;Son Jeong-Sul;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.223-235
    • /
    • 2002
  • Since weak Bones or geological lineaments are likely to be eroded, there may develop weak Bones beneath rivers, and a careful evaluation of ground condition is important to construct structures passing through a river. DC resistivity method, however, has seldomly applied to the investigation of water-covered area, possibly because of difficulties in data aquisition and interpretation. The data aquisition having high quality may be the most important factor, and is more difficult than that in land survey, due to the water layer overlying the underground structure to be imaged. Through the numerical modeling and the analysis of a case history, we studied the method of resistivity survey at the water-covered area, starting from the characteristics of measured data, via data acquisition method, to the interpretation method. We unfolded our discussion according to the installed locations of electrodes, ie., floating them on the water surface, and installing them at the water bottom, because the methods of data acquisition and interpretation vary depending on the electrode location. Through this study, we could confirm that the DC resistivity method can provide fairly reasonable subsurface images. It was also shown that installing electrodes at the water bottom can give the subsurface image with much higher resolution than floating them on the water surface. Since the data acquired at the water-covered area have much lower sensitivity to the underground structure than those at the land, and can be contaminated by the higher noise, such as streaming potential, it would be very important to select the acquisition method and electrode array being able to provide the higher signal-to-noise ratio (S/N ratio) data as well as the high resolving power. Some of the modified electrode arrays can provide the data having reasonably high S/N ratio and need not to install remote electrode(s), and thus, they may be suitable to the resistivity survey at the water-covered area.

A Study on the Architectural Planning Characteristics of Medical Buildings - Focused on Cheong-ju Area (메디컬빌딩의 건축계획특성 연구 - 청주지역을 중심으로)

  • Baek, Sang Yeol;Kim, Gi Soo
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.21 no.3
    • /
    • pp.69-77
    • /
    • 2015
  • Purpose: Under a trend of hospitals that repeated expansion in line with fast increasing factors of medical demands in the past, medical buildings where clinic businesses have regularly gathered in one building have exponentially increased since separation of prescribing and dispensing in 2000. Thus, this study aims at analyzing characteristics of architectural plan of the current medical buildings, identifying strengths and weaknesses through Post Occupancy Evaluation and suggesting an architectural planning method of medical buildings to be planned in the future. Methods: Scope of study has been limited to 23 medical buildings that are registered in the building register as medical buildings out of the Class 1 neighborhood facilities build as 5 floors or more in Cheongju region since 2000 and being actually used for the usage. Study method is to define concepts of the medical buildings through literature review and advanced researches, analyze characteristics of architectural plan through drawing analysis and site survey. Results: General characteristics of architectural plans for the medical buildings in Cheongju have been analyzed. There are the most frequencies in general commercial area and semi-residential area, most of them are reinforced concrete structure and the Class 1 neighborhood facilities. Average land area is $482.68m^2$, gross floor area $3720.8m^2$, the number of underground floors level 1.16, the number of floors level 7.76, total number of floors 8.92, the building-to-land ratio 67.28%, floor area ratio 452.6%, height 31.44m, and the number of parked vehicles 24.16. Implications: This research will contribute to the establishment of the planning methods which increase the quality of Medical Buildings in Cheongju.

System Networking for the Monitoring and Analysis of Local Climatic Information in Alpine Area (강원고랭지 농업기상 감시 및 분석시스템 구축)

  • 안재훈;윤진일;김기영
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.156-162
    • /
    • 2001
  • In order to monitor local climatic information, twelve automated weather stations (AWS) were installed in alpine area by the Alpine Agricultural Experiment Station, Rural Development Administration (RDA), at the field of major crop located in around highland area, and collected data from 1993 to 2000. Hourly measurements of air and soil temperature (underground 10 cm,20 cm), relative humidity, wind speed and direction, precipitation, solar radiation and leaf wetness were automatically performed and the data could be collected through a public phone line. Datalogger was selected as CR10X (Campbell scientific, LTD, USA) out of consideration for sensers' compatibility, economics, endurance and conveniences. All AWS in alpine area were combined for net work and daily climatic data were analyzed in text and graphic file by program (Chumsungdae, LTD) on 1 km $\times$ 1 km grid tell basis. In this analysis system, important multi-functionalities, monitoring and analysis of local climatic information in alpine area was emphasized. The first objective was to obtain the output of a real time data from AWS. Secondly, daily climatic normals for each grid tell were calculated from geo-statistical relationships based on the climatic records of existing weather stations as well as their topographical informations. On 1 km $\times$ 1 km grid cell basis, real time climatic data from the automated weather stations and daily climatic normals were analyzed and graphed. In the future, if several simulation models were developed and connected with this system it would be possible to precisely forecast crop growth and yield or plant disease and pest by using climatic information in alpine area.

  • PDF

Planting Methods and Selecting the Landscape Woody Plants for the Expanding Urban Greenary Area - Focused on the Rooftops and Artificial Ground of Underground Parking Lots - (도시녹지면적 확보를 위한 조경수목선정 및 식재지 조성방안 연구 - 건축물 옥상, 지하주차장 상부를 중심으로 -)

  • 황경희;이경재
    • Korean Journal of Environment and Ecology
    • /
    • v.11 no.1
    • /
    • pp.46-60
    • /
    • 1997
  • The purposes of this research are to select the appropriate kinds of landscape woody plants for afforestation artificial ground and to find out the way of developing planting-tree area of artificial ground through test planting and case study. The summary of the research is as follows; As a result of observing the state of trees' growth, trees on artificial grounds grow as well as, or even better than those on natural grounds. The kinds of trees which represent better growth states on artificial soil of rooftop test area are Thuja occidentalis, Prunus armericana var. ausu, Acer palmatum, Viburnum sargentii for. sterile, Buxus microphylla var. koreana, etc. In addition, soils than on natural soils. As a result of investigating the tree's growth state according to soil beds of artificial soils, shrubs don't represent distinct differences. They show that shrubs can be planted on 30cm soil bed. The rest of trees no differences according to the variation of soil beds, and they are in normal condition or have slight damage. This means that though arbor planting area of artificial ground is made 45~60cm, it is possible for trees to grow on it. In consequence of analyzing the cases on areas of landscaping artificial grounds, as the appropriate kinds of trees for afforestation artificial ground, Diospyros kaki, Hibiscus syriacus, Syringa dilatata, Magnolia kobus, Acer ginnala and cornus alba are selected in Capital region, and Nandina domestica, Taxus cuspidata, Ilex crenata, Viburnum awabuki, Aucuba japonica and Euonymus japonica are selected in southern region. In addition, Juniperus chinensis, Zelkova serrata, Juniperus chinensis var. kaizuka, etc. are selected regardless of regional character. In accordance with the state of soil it shows great difference, namely, fertilization once or more a year and irrigation for drought is advantageous to tree's growth. This research represents that it is necessary that standards related to landscaping artificial grounds are subdivided. In addition to it, the plan for revising related to regulation is drawn up.

  • PDF

A study on the optimization technique for the plan of slope reinforcement arrangement of soil-nailing in tunnel portal area (터널 갱구사면 쏘일네일링 보강배치계획을 위한 최적화기법 연구)

  • Kim, Byung-Chan;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.569-579
    • /
    • 2016
  • In order to ensure the stability of tunnel portal slope, reinforcement method such as anchors, soil nails and rock bolts have been used in Korea. When selecting slope reinforcement methods in tunnel portal area such as reinforcement arrangement and length, trial and error method can be very time-consuming and it was also not easy to verify the selection of an optimum condition. In this study, using the FISH language embedded in the finite difference code FLAC3D program, the optimization technique was developed with the Differential Evolution Algorithm (DEA). After building a database on the soil nailing method in tunnel portal area, this system can be selected to an optimum arrangement plan based on the factor of safety through the FLAC3D analysis. Through the results of numerical analysis, it was confirmed that the number of analysis was decreased by about 8 times when DEA based optimization technique was used compared to the full combination (FC). In case of the design of slope reinforcement in tunnel portal area, if this built-system is used, it is expected that the selection of an optimum arrangement plan can be relatively easier.

A numerical study on effects of drag coefficient of vehicle on jet fans in case of fire in road tunnels (도로터널 화재시 차량의 항력계수가 제연용 제연팬에 미치는 영향에 대한 해석적 연구)

  • Yoo, Yong-Ho;Yoo, Ji-Oh;Kim, Hyo Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.553-560
    • /
    • 2014
  • The road tunnel install a vent for the purpose of ventilation and smoke control. Ventilation equipment capacity(number of jet fans) depends on from the condition that of the pressure and ventilation resistance. Pressure and the resistance under operating vehicle have affected on the drag coefficient. The drag coefficient of the tunnel have affected by the blockage effect and slipstream effects. However, when calculating the ventilation fan, are not properly consider taking into account such effects. Therefore, ventilation force may have been slightly overestimated. This paper describes the drag coefficient through a numerical analysis to calculate the equivalent resistance area that reflects the vehicle distance, and examined the equivalent resistance area. The ventilation coefficient corresponding to the result heavy vehicle mixing ratio of the present study was not clear. Equivalent resistance area had reduced by about 86% compared to the road design handbook current standards. Also it had analyzed and reduced to 62.2% compared to Korea Highway Corporation ventilation design criteria ratio, which is the old standard.

A study on the program development for area optimizing of damper ports in road tunnels with transverse ventilation system (횡류식 도로터널의 급, 배기구 포트 개구면적 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.177-188
    • /
    • 2019
  • The purpose of the optimization of the installation of supply/exhaust ports for tunnels with transverse ventilation system is to supply fresh air from outside to inside of tunnels uniformly and exhaust pollutant from tunnels properly for creating safe and clean environment for tunnel users. For this purpose, a ventilation port area optimization program was developed to obtain a uniform supply or exhaust air volume inside a great depth double deck tunnel with transverse ventilation system. In order to area optimize the developed port sizing program, the wind velocity was measured in the duct of the currently operated tunnel with semi-transverse ventilation. Also 3D cfd was performed on the same tunnel and cfd results were compared to the measured value. As a result, the error rate between the predicted value from the program and measured value was 6.72%, while the error rate between the predicted value from the program and 3D cfd analysis value was 4.86%. Both of comparison results show less than 10% of error rate. Thus It is expected that supply/exhaust port optimization design of transverse ventilation tunnel can be possible with using this large exhaust port area optimization program.