• 제목/요약/키워드: Underfill process

검색결과 26건 처리시간 0.024초

Novel Bumping and Underfill Technologies for 3D IC Integration

  • Sung, Ki-Jun;Choi, Kwang-Seong;Bae, Hyun-Cheol;Kwon, Yong-Hwan;Eom, Yong-Sung
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.706-712
    • /
    • 2012
  • In previous work, novel maskless bumping and no-flow underfill technologies for three-dimensional (3D) integrated circuit (IC) integration were developed. The bumping material, solder bump maker (SBM) composed of resin and solder powder, is designed to form low-volume solder bumps on a through silicon via (TSV) chip for the 3D IC integration through the conventional reflow process. To obtain the optimized volume of solder bumps using the SBM, the effect of the volumetric mixing ratio of resin and solder powder is studied in this paper. A no-flow underfill material named "fluxing underfill" is proposed for a simplified stacking process for the 3D IC integration. It can remove the oxide layer on solder bumps like flux and play a role of an underfill after the stacking process. The bumping process and the stacking process using the SBM and the fluxing underfill, respectively, for the TSV chips are carefully designed so that two-tier stacked TSV chips are sucessfully stacked.

몰딩공정을 응용한 플립칩 언더필 연구 (Studies on Flip Chip Underfill Process by using Molding System)

  • 한세진;정철화;차재원;서화일;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제1권1호
    • /
    • pp.29-33
    • /
    • 2002
  • In the flip-chip process, the problem like electric defect or fatigue crack caused by the difference of CTE, between chip and substrate board had occurred. Underfill of flip chip to overcome this defects is noticed as important work developing in whole reliability of chip by protecting the chip against the external shock. In this paper, we introduce the underfill methods using mold and plunge and improvement of process and reliability, and the advantage which can be taken from embodiment of device.

  • PDF

Interconnection Technology Based on InSn Solder for Flexible Display Applications

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung;Lee, Jin Ho
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.387-394
    • /
    • 2015
  • A novel interconnection technology based on a 52InSn solder was developed for flexible display applications. The display industry is currently trying to develop a flexible display, and one of the crucial technologies for the implementation of a flexible display is to reduce the bonding process temperature to less than $150^{\circ}C$. InSn solder interconnection technology is proposed herein to reduce the electrical contact resistance and concurrently achieve a process temperature of less than $150^{\circ}C$. A solder bump maker (SBM) and fluxing underfill were developed for these purposes. SBM is a novel bumping material, and it is a mixture of a resin system and InSn solder powder. A maskless screen printing process was also developed using an SBM to reduce the cost of the bumping process. Fluxing underfill plays the role of a flux and an underfill concurrently to simplify the bonding process compared to a conventional flip-chip bonding using a capillary underfill material. Using an SBM and fluxing underfill, a $20{\mu}m$ pitch InSn solder SoP array on a glass substrate was successfully formed using a maskless screen printing process, and two glass substrates were bonded at $130^{\circ}C$.

반도체 패키징용 에폭시 기반 접합 소재 및 공정 기술 동향 (Epoxy-based Interconnection Materials and Process Technology Trends for Semiconductor Packaging)

  • 엄용성;최광성;최광문;장기석;주지호;이찬미;문석환;문종태
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.1-10
    • /
    • 2020
  • Since the 1960s, semiconductor packaging technology has developed into electrical joining techniques using lead frames or C4 bumps using tin-lead solder compositions based on traditional reflow processes. To meet the demands of a highly integrated semiconductor device, high reliability, high productivity, and an eco-friendly simplified process, packaging technology was required to use new materials and processes such as lead-free solder, epoxy-based non cleaning interconnection material, and laser based high-speed processes. For next generation semiconductor packaging, the study status of two epoxy-based interconnection materials such as fluxing and hybrid underfills along with a laser-assisted bonding process were introduced for fine pitch semiconductor applications. The fluxing underfill is a solvent-free and non-washing epoxy-based material, which combines the underfill role and fluxing function of the Surface Mounting Technology (SMT) process. The hybrid underfill is a mixture of the above fluxing underfill and lead-free solder powder. For low-heat-resistant substrate applications such as polyethylene terephthalate (PET) and high productivity, laser-assisted bonding technology is introduced with two epoxy-based underfill materials. Fluxing and hybrid underfills as next-generation semiconductor packaging materials along with laser-assisted bonding as a new process are expected to play an active role in next-generation large displays and Augmented Reality (AR) and Virtual Reality (VR) markets.

언더필 공정에 대한 유동 특성과 침투 시간 예측 연구 (Flow Characteristics and Filling Time Estimation for Underfill Process)

  • 심형섭;이성혁;김종민;신영의
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.45-50
    • /
    • 2007
  • The present study is devoted to investigate the transient flow and to estimate the filling time fur underfill process by using the numerical model established on the fluid momentum equation. For optimization of the design and selection of process parameters, this study extensively presents an estimation of the filling time in the view points of some important factors related to underfill materials and flip-chip geometry. From the results, we conclude that the filling time changes with respect to the under fill materials because of different viscosity, surface tension coefficient and contact angle. It reveals that, as the gap height increases, the filling time decreases substantially, and goes to the saturated values.

BGA 패키지를 위한 언더필의 열적 특성과 유동성에 관한 연구 (Evaluation of Thermal Property and Fluidity with Underfill for BGA Package)

  • 노보인;이보영;김수종;정승부
    • Journal of Welding and Joining
    • /
    • 제24권2호
    • /
    • pp.57-63
    • /
    • 2006
  • In this study, the curing kinetics and thermal degradation of underfill were investigated using differential scanning calorimetry (DSC) and thermo gravimetry analysis (TGA). The mechanical and thermal properties of underfill were characterized using dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). Also, we presented on underfill dispensing process using Prostar tool. The non-isothermal DSC scans at various heating rates, the exothermic reaction peak became narrower with increasing the heating rate. The thermal degradation of underfill was composed of two processes, which involved chemical reactions between the degrading polymer and oxygen from the air atmosphere. The results of fluidity phenomena were simulated using Star CD program, the fluidity of the underfills with lower viscosity was faster.

언더필 공정에서 레이싱 효과와 계면 병합에 대한 가시화 (Visualization for racing effect and meniscus merging in underfill process)

  • 김영배;김선구;성재용;이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.351-357
    • /
    • 2013
  • 플립칩 패키징에서 언더필 공정은 칩과 기판 사이를 에폭시로 채워서 본딩하는 공정으로 제품의 신뢰성 향상을 위해 수행되어 진다. 이 언더필 공정은 모세관 현상에 의해서 이루어지는데 유체의 계면과 범프의 배열이 계면 운동에 미치는 영향으로 인하여 공정 중 예기치 않은 공기층을 형성하게 된다. 본 연구에서는 모세관 언더필 유동에서 나타나는 비정상 계면 유동을 가시화하여 범프 배열에 따른 레이싱 효과와 계면의 병합 현상에 대하여 고찰하였다. 그 결과, 플립칩 내부의 범프가 고밀도일수록 유체의 흐름방향과 수직방향의 유동이 더욱 활발하게 진행되어 더 많은 공기층이 형성되었으며, 엇갈린 배열일 경우 직각 배열에 비해 이러한 현상이 더 지배적으로 나타난다.

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Underfill용 액상 Epoxy Compound의 Filler 충진에 따른 Flow특성 연구 (Flow Properties of Liquid Epoxy Compounds as a Function of Filler Fraction for the Underfill)

  • 김원호;황영훈;배종우;정혜욱
    • 마이크로전자및패키징학회지
    • /
    • 제7권2호
    • /
    • pp.21-27
    • /
    • 2000
  • 반도체 공정의 발전에 의해 새롭게 요구되어지는 underfill의 개발을 위해, epoxy/anhydride/ cobalt(II)촉매와 크기가 다른 두 종류(1 $\mu\textrm{m}$, 8 $\mu\textrm{m}$)의 용융 실리카를 충진제로 하여 충진율에 따른 시료의 물성을 측정하고 결과 값의 상호관계를 분석하였다. 우선 $80^{\circ}C$의 흐름공정에서는 경화반응을 일으키지 않고, 성형공정에서 빠른 경화와 100% 경화를 얻기 위해서는 15분간 $160^{\circ}C$로 경화시킨다는 조건에서 1.0 wt%의 촉매가 요구된다는 것을 경화 profile을 이용하여 알 수 있었다. 필러 충진에 따른 표면장력과 점도의 변화 관찰을 통해, real flow가 점도의 변화에 따라 급격한 변화를 보이는 것을 확인할 수 있었다. 1 $\mu\textrm{m}$의 필러가 충진된 시료의 경우 만족할 만한 흐름성을 보여주지 못하였지만 점도개선을 통해 gap크기가 작은 새로운 공정에 적절히 이용되리라 판단되며, 8 $\mu\textrm{m}$의 필러가 충진된 시료의 경우는 55~60 vol%에서 높은 흐름성을 나타내고 있다. 마지막으로 Matthew 모델은 높은 점도- 낮은 표면장력 underfill의 경우에만 침투거리 예측이 가능한 것을 확인할 수 있었다.

  • PDF

Board Level Reliability Evaluation for Package on Package

  • 황태경
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2007년도 SMT/PCB 기술세미나
    • /
    • pp.37-47
    • /
    • 2007
  • Factor : Structure Metal pad & SMO size Board level TC test : - Large SMO size better Board level Drop test : - Large SMO size better Factor : Structure Substrate thickness Board level TC test : - Thick substrate better Board level Drop test : - Substrate thickness is not a significant factor for drop test Factor : Material Solder alloy Board level TC test : - Not so big differences over Pb-free solder and NiAu, OSP finish Board level Drop test : - Ni/Au+SAC105, CuOSP+LF35 are better Factor : Material Pad finish Board level TC test : - NiAu/NiAu is best Board livel Drop test : - CuOSP is best Factor : Material Underfill Board level TC test - Several underfills (reworkable) are passed TCG x500 cycles Board level Drop test : - Underfill lots have better performance than non-underfill lots Factor : Process Multiple reflow Board level TC test : - Multiple reflow is not a significant actor for TC test Board level Drop test : N/A Factor : Process Peak temp Board level TC test : - Higher peak temperature is worse than STD Board level Drop test : N/A Factor : Process Stack method Board level TC test : - No big difference between pre-stack and SMT stack Board level Drop test : - Flux dipping is better than paste dipping but failure rate is more faster

  • PDF