• Title/Summary/Keyword: Unconfined Compressive strength

Search Result 417, Processing Time 0.027 seconds

A Study on the Mechanism of Soil Improvement Using Environment-friendly Organic Acid Material (친환경 유기산 재료를 활용한 지반개량 메커니즘에 관한 연구)

  • Lee, Jong-Hwi;Jung, Jae-Won;Han, Yun-Su;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.23-34
    • /
    • 2013
  • An organic acid material, which can be manufactured by plants extraction, encourages microbe proliferation over time. Microbial activity, which is affected by organic acid, encourages accelerating consolidation with biochemical penetration; soil particles are compacted by microbes and pore water is dissipated quickly. Additionally, $CaCO_3$ for cementation was made by proliferating microbes. Accordingly, tests were conducted to investigate the unconfined compressive strength and permeability of soil samples aged with and without an organic acid. In the 96 days of aging, the strength was generally 1.5~2.5 times greater than those without an organic acid material and permeability was definitely decreased to 74.2~93.1%. SEM analysis showed the change of pore structure and the change of the total bacteria counts revealed the activity of microbes reflecting the engineering characteristics and this material would be an environment-friendly for soil improvement.

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Development of inorganic thixotropic-grout for backfilling of shield TBM tail voids and its compatibility (쉴드 TBM 뒤채움용 무기계 가소성 그라우트의 개발 및 적합성 평가)

  • Kim, Dae-Hyun;Jung, Du-Hwoe;Jeong, Gyeong-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.277-286
    • /
    • 2009
  • A suitability of a thixotropic grout developed in this study has been examined through laboratory tests on strength, segregation, and viscosity. The thixotropic grout is a mixture of two types of liquid components. The A-liquid component consists of cement, water, and MG-A and the B-liquid component consists of scarlet, water, and MG-B. Unconfined compressive strength of specimens prepared with a prefer mix-proportion satisfied a design criteria for the backfilling of tail voids. A material segregation phenomenon under water condition was not observed in the thixotropic grout whereas it was observed in the existing silica-type grout. In addition, viscosity tests have been rallied out on the thixotropic grout to verify the capability of a long-distance delivery in the field. Both the A-liquid component and the B-liquid component maintained a viscosity of below 2,000 cP for 120 minutes. This experimental result confirms that two liquid components guarantees a long-distance delivery in tile field application.

Static and dynamic characteristics of silty sand treated with nano-silica and basalt fiber subjected to freeze-thaw cycles

  • Hamid Alizadeh Kakroudi;Meysam Bayat;Bahram Nadi
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • This study investigates the influence of nano-silica and basalt fiber content, curing duration, and freeze-thaw cycles on the static and dynamic properties of soil specimens. A comprehensive series of tests, including Unconfined Compressive Strength (UCS), static triaxial, and dynamic triaxial tests, were conducted. Additionally, scanning electron microscopy (SEM) analysis was employed to examine the microstructure of treated specimens. Results indicate that a combination of 1% fiber and 10% nano-silica yields optimal soil enhancement. The failure patterns of specimens varied significantly depending on the type of additive. Static triaxial tests revealed a notable reduction in the brittleness index (IB) with the inclusion of basalt fibers. Specimens containing 10% nano-silica and 1% fiber exhibited superior shear strength parameters and UCS. The highest cohesion and friction angle were obtained for treated specimens with 10% nano-silica and 1% fiber, 90 kPa and 37.8°, respectively. Furthermore, an increase in curing time led to a significant increase in UCS values for specimens containing nano-silica. Additionally, the addition of fiber resulted in a decrease in IB, while the addition of nano-silica led to an increase in IB. Increasing nano-silica content in stabilized specimens enhanced shear modulus while decreasing the damping ratio. Freeze-thaw cycles were found to decrease the cohesion of treated specimens based on the results of static triaxial tests. Specimens treated with 10% nano-silica and 1% fiber experienced a reduction in shear modulus and an increase in the damping ratio under freeze-thaw conditions. SEM analysis reveals dense microstructure in nano-silica stabilized specimens, enhanced adhesion of soil particles and fibers, and increased roughness on fiber surfaces.

An experimental investigation on dispersion and geotechnical properties of dispersive clay soil stabilized with Metakaolin and Zeolite

  • Ahmadreza Soltanian;Amirali Zad;Maryam Yazdib;Amin Tohidic
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • Dispersion occurs when clay soil disperses under specific conditions and is rapidly washed away. While there are numerous methods for rectifying it, they are neither cost nor time-effective. The current study used metakaolin and zeolite to improve heavily dispersive clay soil either separately or in combination at 0%, 2%, 4%, 6%, and 8% of the soil weight. After 7 days of curing, the samples were tested to determine the extent of change in the dispersion potential, as well as the improvement of the geotechnical properties of the soil. The results indicated that the addition of 2% zeolite with 6% to 8% metakaolin decreased the dispersion potential considerably. Double hydrometry test findings revealed that the dispersion potential decreased by almost 70% and entered the non-dispersive group; the crumb test also revealed this. Atterberg limits testing indicated a decrease in the plasticity index which reduced the flexibility of the samples. The greatest decrease in PI (67.5%) was achieved with the addition of 8% zeolite plus 8% metakaolin to the soil. The results of density tests revealed that a decrease in the optimal moisture content increased the maximum dry density of soil. This increase in density was a response to the high reactivity of metakaolin with calcium hydroxide and the formation of calcium hydroxide hydrate gel. This eventually caused an increase in the unconfined compressive strength, the greatest increase in strength of about 1.8-fold was observed with a combination of 2% zeolite and 6% metakaolin compared to the unmodified sample.

Comparative study of calcium carbonate deposition induced by microorganisms and plant ureases in fortified peat soils

  • Chao Wang;Jianbin Xie;Yinlei Sun;Jianjun Li;Jie Li;Ronggu Jia
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.187-202
    • /
    • 2024
  • For the problems of high compressibility and low strength of peat soil formed by lake-phase deposition in Dianchi Lake, microbial-induced calcium carbonate deposition (MICP), phyto-urease-induced calcium carbonate deposition (EICP) and phyto-urease-induced calcium carbonate deposition combined with lignin (EICP combined with lignin) were used to reinforce the peat soil, the changes in mechanical properties of the soil before and after the reinforcement of the peat soil were experimentally investigated, and the effect and mechanism of peat soil reinforcing by the three reinforcing techniques were tested and analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that: compared to the unreinforced remolded peat soil specimens, the unconfined compressive strength (UCS), cohesion and internal friction angle of the specimens reinforced by MICP, EICP and EICP combined with lignin techniques have been greatly improved, and the permeability resistance has been improved by two, two and three orders of magnitude, respectively; the different methods of reinforcing generate different calcium carbonate crystalline phases, with the EICP combined with lignin technique generating the most stable calcite, and the MICP and EICP techniques generating a mixed phase of calcite and spherulitic chalcocite. Analyses showed that for peat soil reinforcement, the acidic environment of peat soil inhibited the growth and reproduction of bacteria, EICP technology was superior to MICP technology, and the addition of lignin solved the defect of the EICP technology that did not have a "nucleation site", so EICP combined with lignin reinforcement was preferred for the improvement of peat soil.

Effect of Hardening of Granulated Blast Furnace Slag on the Liquefaction Strength (고로 수쇄슬래그의 경화가 액상화 강도에 미치는 영향)

  • Baek, Won-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.99-106
    • /
    • 2006
  • In the present study, in order to clarify the effects of latent hydraulic property of granulated blast furnace slag (GBF slag) on the liquefaction, GBF slag was cured in the high temperature alkali water (adding the calcium hydroxide, pH=12, water temperature is about $30^{\circ}C$), and then the cyclic and the static tri-axial compression tests were carried out. Then the results were compared with those for Japanese standard sand of Toyoura sand and natural sand of Genkai sand. From the test results, it is clarified that the liquefaction strength of the GBF slag increases with the increase of the curing period by the hardening due to the latent hydraulic property. It is also shown that GBF slag with Dr=50% and 80% which was cured for 189 days in the fresh-water shows cohesion due to developing of latent hydraulic property. In addition, as for the liquefaction strength of GBFS during the hardening process, a linear relation between the cyclic stress ratio $R_{20}$ at the number of stress cycles Nc=20 and cohesion $C_{d}$ was observed. It is also clarified that the liquefaction strength for cured GBF slag in the high temperature alkali water is predicted by the cohesive strength or the unconfined compressive strength.

Study on the Direct Tensile Test for Cemented Soils Using a Built-In Cylinder (내장형 실린더를 이용한 시멘트 고결토의 인장시험 방법에 관한 연구)

  • Park, Sung-Sik;Lee, Jun-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1505-1516
    • /
    • 2014
  • In this study, a cylinder embedded within cemented soils was used to cause directly tensile failure of cemented soils. An existing dumbbell type direct tensile test and a split tensile test that is most general indirect tensile test were also carried out to verify the developed built-in cylinder tensile test. Testing specimens with two different sand/cement ratios (1:1 and 3:1) and two curing periods (7 and 28 days) were prepared and tested. Total 10 specimens were prepared for each case and their average value was evaluated. Unconfined compression tests were also carried out and the ratio of compressive strength and tensile strength was evaluated. The tensile strength determined by built-in cylinder tensile test was slightly higher than that by dumbbell type direct tensile test. The dumbbell type test has often failed in joint part of specimen and showed some difficulty to prepare a specimen. Among three tensile testing methods, the standard deviation of tensile strength by split tensile test was highest. It was shown that the split tensile test is applicable to concrete or rock with elastic failure but not for cemented soils having lower strength.

Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures. (함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I))

  • 김재영;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF

A Study on the Reinforcement Case of Bridge Foundation in the Limestone Cavity with CGS Method (CGS 공법 적용 석회암 공동지역의 교량기초보강 사례 연구)

  • Park, Sungsu;Hong, Jongouk;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.43-52
    • /
    • 2013
  • Limestone typically forms large caverns such as reticular caverns or limestone caves, and also forms sinkhole and doline. These caverns cause different settlement when constructing roads, dams, etc. because the foundation cannot sustain the upper structures. So it is necessary to reinforce foundation such as cavern filling method, etc. In this study, ground reinforcement for structure foundation was carried out using CGS method in limestone cavity area and evaluation of reinforcement effect from engineering viewpoint was conducted through the field test. Among others, boring test was carried out to identify the ground structure and engineering characteristics. After CGS reinforcement, boring test was conducted for supplementary verification, and with reinforcement core taken during boring test, rock test was carried out to identify the physical properties of reinforcement material. After applying CGS method, rock test of the typical specimen, among reinforcement cores, taken from boring test was carried out and physical properties of the reinforcement was identified. As a result of compressive test of core sample, material inside the cavity was filled properly, indicating compressive strength of 12.2~19.2(MPa) which was evaluated acceptable. Thus the limestone cavity proved to have been reinforced successfully.