• Title/Summary/Keyword: Uncertainty measurement

Search Result 930, Processing Time 0.052 seconds

Position and Vibration Control of a Flexible Manipulator Using $\mu$-Synthesis ($\mu$-합성법에 의한 유연한 조작기의 위치 및 진동제어)

  • Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3186-3198
    • /
    • 1996
  • When a robot is to have contact with its enviornment, such as a medi-care robot, it would be advantageous for the robot to have a high compliance. For this reason, a robot having not only a flexible link but also an actuator with compliance, is desirable. This paper is concerned with the position and vibration control of 1 degree of freedom flexible robot using a pneumatic artificial muscle actuator. The dynamics of the manipulator assumed to be and Euler-Bernoulli beam are derived on the basis of the linear mathematical modle. Although this pneumatic artifical muscle actuator has many merits for the compliance robot, it is difficult to make an effective control scheme of this system because of ths nonlinearity and uncertainty on the dynamics of the actuator. By designing a controller using .mu.-synthesis, robust performance against measurement noise, various modeling uncertainties on the dynamics of the servo valve, actuator and mainpulator, is achieved. The effectiveness of the proposed control method is illustrated through simulations and experiments.

System Modeling and Robust Control of an AMB Spindle : Part II A Robust Controller Design and its Implementation

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1855-1866
    • /
    • 2003
  • This paper discusses an entire procedure for a robust controller design and its implementation of an AMB (active magnetic bearing) spindle, which is part II of the papers presenting details of system modeling and robust control of an AMB spindle. Since there are various uncertainties in an AMB system and reliability is the most important factor for applications, robust control naturally gains attentions in this field. However, tight evaluations of various uncertainties based on experimental data and appropriate performance weightings for an AMB spindle are still ongoing research topics. In addition, there are few publications on experimental justification of a designed robust controller. In this paper, uncertainties for the AMB spindle are classified and described based on the measurement and identification results of part I, and an appropriate performance weighting scheme for the AMB spindle is developed. Then, a robust control is designed through the mixed ${\mu}$ synthesis based on the validated accurate nominal model of part I, and the robust controller is reduced considering its closed loop performance. The reduced robust controller is implemented and confirmed with measurements of closed-loop responses. The AMB spindle is operated up to 57,600 rpm and performance of the designed controller is compared with a benchmark PID controller through experiments. Experiments show that the robust controller offers higher stiffness and more efficient control of rigid modes than the benchmark PID controller.

Study on the Multi-measuring Method for Evaluation of Internal Leak of Power Plant Valve (발전용 밸브누설 평가를 위한 다중계측 연구)

  • Lee, S.G.;Park, S.K.;Park, J.H.;Kim, K.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.35-40
    • /
    • 2007
  • Leak would happen because of the damage of high temperature and high-pressure valve in nuclear power plant. condition based prevention maintenance is essential by using the suitable method based on local condition. Energy loss prevention can prevent from an accurate test, Local actually and ability. The methods of test for high energy fluid leak at present are analysis of ${\Delta}T$, AE(Acoustic Emission) analysis, and thermal image. The result for test of secondary system in nuclear power plant Unit reveals that the AE occurred clearly in leakage situation, but thermal image didn't occur. It is identified that leak is occurred when the orifice located front and back of valve operates. It shows that making a impatient judgment by using the single method if it is leakage is containing uncertainty. So we think that using the Multi-Measuring method is more sound judgment than single-measuring method.

  • PDF

Proposal of Practical Reference-Model and It's Performance Improvement for PID Control (PID제어를 위한 실용적인 기준 모델 제안과 성능개선)

  • Hur, J.G.;Yang, K.U.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.66-72
    • /
    • 2007
  • This study proposed new method to decide the reference model necessary for design PID controller. In generally, control design problems using the reference model have the following two factors. One factor is that numerical model of the controlled system can be obtained extremely, and the other is that specification for the closed-loop dynamic performance is pure moderate. Therefore, the control design procedure is essentially based on the partial reference model matching which offers a reasonable method to simplify the design and the controller configuration under the controlled system uncertainty. ITAE(Integral of time-multiplied absolute error) performance index and Kitamori method etc. which were used a reference model method had a limit to settling time and rising time of reference model that it arrived to steady state response according to the controlled system. On this study, if it only knew peak time of overshoot and settling time by measurement signal of the controlled system, it can be made the reference model easily. We proposed new method to improve performance index of the reference model superior to existing reference model index and illustrate the numerical simulation results to show the effectiveness of proposed control method design.

  • PDF

Structural damage alarming and localization of cable-supported bridges using multi-novelty indices: a feasibility study

  • Ni, Yi-Qing;Wang, Junfang;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.337-362
    • /
    • 2015
  • This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.

Alternating Pressure Profile Characteristics of Powered Pressure Ulcer Preventing Devices (동력형 욕창예방제품의 교대부양 압력 프로파 특성)

  • Won, Byeong-Hee;Song, Chang-Seop
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.639-646
    • /
    • 2010
  • The APAM's quantitative effectiveness and comparative study in preventing and treating pressure ulcer has not been sufficiently evaluated mainly because of uncertainty of pressure load input and lack of interpretation of dynamic perfusion recovery characteristics of soft tissue. The purpose of this paper was to quantify and analyze the alternating pressure characteristics of APAM as a preventive measure for pressure ulcers. To quantify the alternating load to human body, we introduced alternating pressure profile concept and developed parametric model of the profile. Regarding pressure level and cycle time, 3 global and 7 local periodic parameters were used to define the profile such as light, standard, typical and heavy duty profile shape. Pressure impulse ratio of light duty is the lowest but pressure fluctuation is significantly high. For the same duty shape, contact conditions are changed with alternating cycle time and more dramatically in shorter alternating cycle time conditions. We can conclude that if we use shorter alternating cycle time on APAM's operation we can get more positive effects regarding to inflated contact time condition. We proposed the quantitative methods on tissue viability study of external loading by simultaneous measurement of interface pressure and tissue perfusion with proper alternating pressure profile conditions.

DETERMINATION OF GPS HEIGHT WITH INCORPORATION OF USING SURFACE METEOROLOGICAL MEASUREMENTS

  • Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • Although the positioning accuracy of the Global Positioning System (GPS) has been studied extensively and used widely, it is still limited due to errors from sources such as the ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath and tropospheric influence. This investigation addresses the tropospheric effect on GPS height determination. Data obtained from GPS receivers and co-located surface meteorological instruments in 2003 are adopted in this study. The Ministry of the Interior (MOl), Taiwan, established these GPS receivers as continuous operating reference stations. Two different approaches, parameter estimation and external correction, are utilized to correct the zenith tropospheric delay (ZTD) by applying the surface meteorological measurements (SMM) data. Yet, incorrect pressure measurement leads to very poor accuracy. The GPS height can be affected by a few meters, and the root-mean-square (rms) of the daily solution ranges from a few millimeters to centimeters, no matter what the approach adopted. The effect is least obvious when using SMM data for the parameter estimation approach, but the constant corrections of the GPS height occur more often at higher altitudes. As for the external correction approach, the Saastamoinen model with SMM data makes the repeatability of the GPS height maintained at few centimeters, while the rms of the daily solution displays an improvement of about 2-3 mm.

  • PDF

Optimal Control Design for Automatic Ship Berthing by Using Bow and Stern Thrusters

  • Bui, Van Phuoc;Jeong, Jeong-Soon;Kim, Young-Bok;Kim, Dong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.10-17
    • /
    • 2010
  • Conventionally, because it is difficult to control a ship in shallow water and because attempting to do so creates unwanted environmental effects, maneuvering ships in the harbor area for berthing is usually done with the assistance of tugboats. In this paper, we propose a new method for berthing ships automatically by using bow and stern thrusters. Specifically, a steering motion model of a ship is considered, and parameters in the equation are evaluated by the system identification technique. An optimal controller based on observations was designed from the linearization of the non-linear ship motion in the horizontal plane. It is used to reduce the uncertainty about the ship's dynamics and reduce measurement requirements. The performance of the controller was also analyzed for its robustness relative to avoiding disturbing the environment due to winds, currents, and wave-drift forces. Experiments were conducted to estimate the potential for identifying result and the design of the controller. Specifically, in this paper, the system modeling and tracking control approach are discussed based on a two-degree-of-freedom (2DOF) servo-system design.

A Germanium Detector Structure PENEL OPE Characteristic Analysis by Computer Simulation (HPGe 검출기의 PENELOPE 전산모사에 의한 특성 분석)

  • Jang, Eunsung;Jang, BoSeok
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.2
    • /
    • pp.73-77
    • /
    • 2015
  • In order to observe the detailed structure of the detector, it was CT scanned to reproduce the detailed structure of the crystal shapes and traverse layer using the Monte Carlo calculation applying the detector model. The uncertainty of measurement was lowered by adjusting the detector core by the edge effect at a higher energy (400 keV or higher) through the offset of peak efficiency of the gamma ray at low energy. It was confirmed that there was the appropriate matching with spatial dependency using the PENELOPE calculation. That was achieved by adjusting the parameters describing the crystal core and rounding of edge and crystal core.

Lateral Force Calibration of Colloidal Probe in Liquid Environment Using Reference Cantilever (기준 외팔보를 이용한 액체 환경에서 Colloidal Probe의 수평방향 힘 교정)

  • Je, Youngwan;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • There is an indispensable need for force calibration for quantitative nanoscale force measurement using atomic force microscopy. Calibrating the normal force is relatively straightforward, whereas doing so for the lateral force is often complicated because of the difficulty in determining the optical lever sensitivity. In particular, the lateral force calibration of a colloidal probe in a liquid environment often has a larger uncertainty as a result of the effects of the epoxy, the location of the colloidal particle on the cantilever, and a decrease in the quality factor. In this work, the lateral force of a colloidal probe using a reference cantilever with a known spring constant was calibrated in a liquid environment. By obtaining the spring constant and the lateral sensitivity at the equator of a spherical colloidal particle, the damage to the bottom surface of the colloidal particle could be eliminated. Further, it was shown that the effect of the contact stiffness on the determination of the lateral spring constant of the cantilever could be minimized. It was concluded that this method can be effectively used for the lateral force calibration of a colloidal probe in a liquid environment.