• 제목/요약/키워드: Uncertain parameters

Search Result 446, Processing Time 0.023 seconds

A Fault Detection system Design for Uncertain Nonlinear Systems (불확실한 비선형시스템을 위한 고장검출 시스템 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.185-189
    • /
    • 2007
  • This paper deals with a fault detection system design for nonlinear systems with uncertain time varying parameters modelled as a T-S fuzzy system. A coprime factorization for T-S fuzzy systems is defined and a residual generator is designed using a left coprime factor. A fault detection criteria derived from the residual generator is also suggested. In order to demonstrate the efficacy of the suggested method, the fault defection method is applied to an inverted pendulum system and computer simulations are performed.

Design of Current-Feedback Control for DC Motors (DC 모터를 위한 전류궤환형 학습제어기 설계)

  • Baek, Seung-Min;Kim, Jin-Hong;Kuc, Tae-Yong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1520-1526
    • /
    • 1999
  • This paper presents a current feedback learning controller for dynamic control of DC motors. The proposed controller uses the full third-order dynamics model of DC motor system to drive stable learning rules for virtual current learning input, voltage learning input, and the coefficient of electromotive force. It is shown that the proposed learning controller drives the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation and experimental results are given to demonstrate the effectiveness of the proposed adaptive learning controller.

  • PDF

Robust Decentralized Adaptive Controller for Trajectory Tracking Control of Uncertain Robotic Manipulators (비중앙 집중식 강성 적응 제어법을 통한 산업용 로봇 궤도추적제어)

  • 유삼상
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.329-340
    • /
    • 1994
  • This paper presents a dynamic compensation methodology for robust trajectory tracking control of uncertain robot manipulators. To improve tracking performance of the system, a full model-based feedforward compensation with continuous VS-type robust control is developed in this paper(i.e,. robust decentralized adaptive control scheme). Since possible bounds of uncertainties are unknown, the adaptive bounds of the robust control is used to directly estimate the uncertainty bounds(instead of estimating manipulator parameters as in centralized adaptive control0. The global stability and robustness issues of the proposed control algorithm have been investigated extensively and rigorously via a Lyapunov method. The presented control algorithm guarantees that all system responses are uniformly ultimately bounded. Thus, it is shown that the control system is evaluated to be highly robust with respect to significant uncertainties.

  • PDF

Adaptive Observer using Auto-generating B-splines

  • Baang, Dane;Stoev, Julian;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.479-491
    • /
    • 2007
  • This paper presents a new adaptive observer design method for a class of uncertain nonlinear systems by using spline approximation. This scheme leads to a simplified observer structure which requires only fixed number of integrations, regardless of the number of parameters to be estimated. This benefit can reduce the number of integrations of the observer filter dramatically. Moreover, the proposed adaptive observer automatically generates the required spline elements according to the varying output value and, as a result, does not requires the pre-knowledge of upper and lower bounds of the output. This is another benefit of our approach since the requirement for known output bounds have been one of the main drawbacks of practical universal approximation problems. Both of the benefits stem from the local support property, which is specific to splines.

Robust Adaptive Control of A HexaSlide Type Parallel Manipulator

  • Kim, Jong-Phil;Kim, Sung-Gaun;Ryu, Jeha
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.262-267
    • /
    • 2001
  • Jeha Ryu Department of Mechatronics, Kwangju Institute of Science and Technology This paper presents an application of a robust adaptive control strategy to HexaSlide type six degrees-of-freedom parallel manipulators. The HexaSlide type parallel manipulators are characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. The proposed control law is developed based on a simplified second order system dynamic equation in joint space with uncertain mass, damper, spring, and Coulomb friction terms. These uncertain parameters are updated by an adaptation law that is derived by Lyapunov stability theorem. A robust adaptive control law by using the boundary layer is designed for the purpose of compensating for the neglected dynamic effects of the mobile platform and the six moving links that are modeled as a disturbance term. Experimental results show good and fast tracking performance.

  • PDF

Neuro controller of the robot manipulator using fuzzy logic (퍼지 논리를 이용한 로보트 매니퓰레이터의 신경 제어기)

  • 김종수;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.866-871
    • /
    • 1991
  • The multi-layer neural network possesses the desirable characteristics of parallel distributed processing and learning capacity, by which the uncertain variation of the parameters in the dynamically complex system can be handled adoptively. However the error back propagation algorithm that has been utilized popularly in the learning procedure of the mulfi-Jayer neural network has the significant limitations in the real application because of its slow convergence speed. In this paper, an approach to improve the convergence speed is proposed using the fuzzy logic that can effectively handle the uncertain and fuzzy informations by linguistic level. The effectiveness of the proposed algorithm is demonstrated by computer simulation of PUMA 560 robot manipulator.

  • PDF

Robust Vehicle Stability Control Using Disturbance Observer (외란 관측기를 이용한 견실한 차량 안정성 제어)

  • Hahn, Jin-Oh;Yi, Kyong-Su;Kang, Soo-Joon;Lee, Il-Kyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2519-2526
    • /
    • 2002
  • A disturbance observer-based vehicle stability controller is proposed in this paper. The lumped disturbance to the vehicle yaw rate dynamics caused by the uncertain factors such as uncertain tire forces and parameters is estimated by the disturbance observer, which is utilized by the robust controller to stabilize the lateral dynamics of the vehicle. The dynamics of the hydraulic actuator is incorporated in the vehicle stability controller design using the model reduction technique. Modular control design methodology is adopted to effectively deal with the mismatched uncertainty. Simulation results indicate that the proposed disturbance observer-based vehicle stability controller can achieve the desired reference tracking performance as well as sufficient level of robustness.

Control of the Hydraulic System Using the Global Sliding Mode Control (전역슬라이딩모드 제어를 이용한 전기유압 시스템의 제어)

  • 최형식;김명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.218-228
    • /
    • 2003
  • A hydraulic system is modeled as the second order differential equation with uncertain system parameters and disturbance composed of modeling errors. To Position the load of the hydraulic system to a desired point. the servo valve of the hydraulic system is controlled. As a control scheme. a global sliding mode control(GSMC) is Proposed Since the servo valve has a torque limit. the GSMC is designed to coordinate the position of the load along the minimum time trajectory within the torque limit. The Proposed control scheme can be designed with ranges of parametric uncertainties and specified torque limits. By the proposed control scheme, the closed form solution of the arriving time at the desired position can be estimated.

Asymmetric Robustness Bounds of Eigenvalue Distribution for Uncertain Linear Systems (불확실한 선형시스템 고유값 배치의 비대칭 강인한계)

  • 이재천
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.794-799
    • /
    • 1999
  • This study deals with robustness bounds estimation for uncertain linear systems with structured perturbations where the eigenvalues of the perturbed systems are guaranteed to stay in a prescribed region. Based upon the Lyapunov approach, new theorems to estimate allowable perturbation parameter bounds are derived. The theorems are referred to as the zero-order or first-order asymmetric robustness measure depending on the order of the P matrix in the sense of Taylor series expansion of perturbed Lyapunov equation. It is proven that Gao's theorem for the estimation of stability robustness bounds is a special case of proposed zero-order asymmetric robustness measure for eigenvalue assignment. Robustness bounds of perturbed parameters measured by the proposed techniques are asymmetric around the origin and less conservative than those of conventional methods. Numerical examples are given to illustrate proposed methods.

  • PDF

Discrete-Time Robust Guaranteed Cost Filtering for Convex Bounded Uncertain Systems With Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.324-329
    • /
    • 2002
  • In this paper, the guaranteed cost filtering design method for linear time delay systems with convex bounded uncertainties in discrete-time case is presented. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytotype less conservative than norm bounded parameter uncertainty. The main purpose is to design a stable filter which minimizes the guaranteed cost. The sufficient condition for the existence of filter, the guaranteed cost filter design method, and the upper bound of the guaranteed cost are proposed. Since the proposed sufficient conditions are LMI(linear matrix inequality) forms in terms of all finding variables, all solutions can be obtained simultaneously by means of powerful convex programming tools with global convergence assured. Finally, a numerical example is given to check the validity of the proposed method.