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Adaptive Observer using Auto-generating B-splines

Dane Baang, Julian Stoev, and Jin Young Choi*

Abstract: This paper presents a new adaptive observer design method for a class of uncertain
nonlinear systems by using spline approximation. This scheme leads to a simplified observer
structure which requires only fixed number of integrations, regardless of the number of
parameters to be estimated. This benefit can reduce the number of integrations of the observer
filter dramatically. Moreover, the proposed adaptive observer automatically generates the
required spline elements according to the varying output value and, as a result, does not requires
the pre-knowledge of upper and lower bounds of the output. This is another benefit of our
approach since the requirement for known output bounds have been one of the main drawbacks
of practical universal approximation problems. Both of the benefits stem from the local support

property, which is specific to splines.

Keywords: Adaptive observers, B-splines, nonlinear systems, splines, uncertain systems.

1. INTRODUCTION

The state observation problem for linear and
nonlinear systems arises when the number of
measurable plant outputs is limited. In such cases,
restoring the state information from the limited
number of outputs is required. Linear state

observation theory is now mature and well understood.

Often, however, when the plant information is not
precise, adaptive state/parameter observation is
required. On the other hand, the problem of plant
parameter estimation is the topic of system
identification theory, which has been explored in great
detail for linear systems [1]. The linear adaptive
observer problem was explored in [2,3] for
applications in the linear adaptive control [4-8].

The problem was later extended to several classes
of nonlinear systems. Adaptive observers for large
classes of nonlinear systems are discussed in [9-11],
often using special forms based on the results from
linear systems [12]. The focus was on linear-like
systems with nonlinear output injection term and
unknown parameters entering linearly [13,14]. The
advances in geometric nonlinear control theory [15]
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make the transformation into such form possible.

It is well known that universal approximators can
be used for adaptive control and estimation. A lot of
research has been done in this direction, which
involves mostly radial basis function networks, fuzzy
logic and their combinations. The model structure in
traditional nonlinear adaptive control and state
estimation may include functions with unknown
parameters, but the form of the function is assumed to
be known. Situations where the form of the unknown
function is also unknown have motivated approaches
involving on-line function approximation much of
which is classified as neuro control.

A large amount of research has also been done in
the area of neuro-control using dynamic and recurrent
neural networks [16,17], sigmoidal neural networks
[18] and radial basic function networks [19]. Neural
network techniques have been found to be particularly
useful for controlling highly uncertain, nonlinear and
complex systems [20]. The neural network approach
was first investigated in off-line environments [21,22].
Initially most studies were based strictly on
optimization techniques to derive parameter adaptive
laws. Such schemes perform well in many cases, but
general difficulties arise in developing analytical
results regarding stability, robustness and performance
properties of the overall system. Theoretical
frameworks for on-line adaptive control using neural
networks have been developed for a class of nonlinear
systems [18,19,23,24] and they use Lyapunov design
methods to guarantee stability.

It is also well known that splines are universal
approximators with well established properties. The
theory and applications of B-spline have been well
developed in various areas including applied
numerical analysis, interpolation theory, Neural
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networks, fuzzy systems, signal processing, etc.
Splines are used in [25] to approximate probability
density function of a continuous random variable,
with the measured entropy as its cost function. The
potential of the B-spline neural network (BSNN) for
the modeling of nonlinear processes is demonstrated
in [26] by comparing BSNN to MLP model. An
efficient generalized B-spline filtering technique for
the signal processing is shown in [27] with a
representation of signals in terms of continuous
generalized B-spline basis functions. B-splines are
adopted in [28] for the design of fuzzy controller and
applied to an optimal partition algorithm and
linguistic modifications to minimize the size of fuzzy
rules. Some recent developments are extended in [29]
to image processing applications based on the
representation of a signal in terms of continuous
generalized B-Spline basis functions. A generalization
of B-splines into fuzzy B-splines for modeling
uncertain and sparse data can be found in [30].
Smoothing splines [31,32] are used in [33] to develop
a method for planning trajectories while minimizing a
quadratic cost functional over the control input to a
linear system. A connection between B-spline theory
and control can be found in [34].

The first motivation for this paper is the fact that as
the contemporary control problems deal with
increasingly nonlinear and poorly understood plants,
the importance of the approximation properties is
increasing. The well-established approximation
methods, for examples, neural networks, fuzzy logic,
have many applications and advantages. But their
computational complexity grows very fast as the plant
nonlinearity increases. This motivates us to explore
splines as alternative approximation technique with
less computational complexity. The motivation for
this paper is also the relative lack of works related
specifically to splines, and of splines used in nonlinear
system identification, especially taking into account
the large number of such results using other kinds of
universal approximators. As a result, there are
relatively few works exploring the special properties
of splines, which make them more (or less) attractive
from the point of view of control engineering.

Another motivation is that, in reality, the
information of measurement signal bounds is required
in most on-line function approximation problems.
This problem often requires pre-operation of the plant
or unreliable heuristics to predict measurement
bounds. This also motivates us to develop an
approximation scheme, which generates basis
functions automatically in function approximation for
adaptive observer design, as the measurement value
changes.

The significance of this paper is the use of splines
as universal approximators and the exploration of
their advantages when applied to adaptive observer

design. In this paper, we consider the problem of
adaptive state observation of a large class of nonlinear
uncertain systems and show that splines have some
special properties, which can lead to simplified
observer structure. In particular, the observer filter
requires fixed number of integrators, independent of
the number of parameters to be estimated. This
appears to bring a significant benefit for the observer
design, especially compared to other kinds of
universal approximators.

We also show that the knowledge of measurement
bound is not required in the proposed design since, in
our approach, the spline element in approximation is
simultaneously ~— generated according to  the
measurement value of the plant output. This also
seems a significant benefit since it removes the
necessity of heuristics pre-operations of the plant.

These benefits of the proposed observer design are
due to the local support property, which is specific to
spline approximation.

In Section 2, we pose an adaptive observer design
problem by using universal approximators. In Section
3, we give some basic properties of splines, which are
necessary for the understanding of the proposed
design. In Section 4, we show a particular form of
plant parameterization using splines. Using this result,
the observer design is performed in a straightforward
way. We design our adaptive observer and analyze it
in Sections 5 and 6. In Sections 7 and 8, we finish
with a numerical simulation demonstrating the
benefits of the proposed design.

2. ADAPTIVE OBSERVER PROBLEM
FORMULATION

A large class of SISO systems can be represented in
the output feedback form, where the dynamics is
linear and the nonlinear terms on the right hand side
of the differential equations depend on measurable
signals.

(1) = Ax(1) + F(y(1), (1)),

y(1) = Cx(1),
where x(¢)e R" is the state, y(¢),u(f)e R are
the measurable system output and input, respectively.

The functions F(-) € [fi(),..., £, ()]" are often partially

known. The availability of only partial information
about F(-)is the reason why the adaptive observer is

)

appealing. The information about F'(-) may be from

the physical knowledge of the system or some

identification procedure.

» There may be known terms in F(-). No adaptation
is necessary for them.

+ There may be partially known terms in F(r). They
are known up to some unknown constants, which
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are linearly combined with some known functions.

Adaptation with respect to these unknown constants

should be performed.

+ There may be the terms in F(f), about which we do
not know any functional relation, or the functional
relation available is nonlinear in the unknown
constant parameters. Universal approximators can
be used to model these terms. Several classes of
universal approximators, which are linear in
parameters can be used. These include radial basis
functions, fuzzy logic, and among others, spline
based representations.

This paper considers the third case, the most
general one. This problem has been addressed by
neural network and fuzzy communities using the
theoretical background from nonlinear control. Since
the fuzzy systems and radial basis functions are
universal approximators, it is well known that the
minimum approximation error of this term can be
made arbitrary small by using more rules and RBF
neurons [35]. With the complexity of the universal
approximator increasing, the number of parameters to
be updated is also increasing very quickly and this
makes the application of such methods problematic in
the real world. Furthermore, approximation procedure
often requires the knowledge of the bound of
measurement in advance, to determine the area where
neurons are to be built.

In this paper, we show that the use of spline
approximation can overcome these two difficulties,
when applied to adaptive observers for a class of
nonlinear systems.

3. SPLINE-BASED FUNCTION
APPROXIMATION

The book [36] has the most important develop-
ments in the area of spline approximators. We give
some of the B-spline definitions and properties. All
functions here are chosen to be right-continuous.
Other choices are also possible.

Definition 1: For a nondecreasing knot sequence
Y:={y,,i=L..,my <y,}, the B-spline of order 1

over the domain y; <y <y, isdefined as

Lify,<y<yin
0, otherwise.

B (»)=X;(y)= { (2)

Higher-order B-splines are defined recursively as
follows and an example is given in Fig. 1.

B ()=, (VB (M + (=0, (YNB (),
Y=Y

D, 4 ) =9 Yiega = Vi

0, otherwise.

s Y # Vi (3)

0.75

0.5

0.25

Fig. 1. Example of B-splines B, ,B,,,B,;, B, ,.

Remark 1: From the above definitions, it is clear
that B, ;(y) is defined only on k+1 knots and it

has non-zero valueonlyon y, <y<y,,.

Corollary 1: B, (y) can be represented as a
polynomial in y of degree k-1 with switching
parameters. For some particular y, (3) is equivalent
to

Bi,k )= [ﬂi,;,o :Bi,j,lm ]¢k ),

4
6. N=0" ¥y .. YT, @

where 5, i J= L,...,k, are the polynomial coefficients

for the piecewise segments of B, ,(y), which can be

calculated recursively using (2) and (3).
A spline of order &k with a knot sequence Y isa

linear combination of B-splines B,, associated with

the knot sequence Y . In this paper, B-splne is used as
a spline.

We next provide an important theorem which
shows that B-splines can approximate any continuous
functions with arbitrary precision on a compact set.
Because B-splines can be alternatively represented as
piecewise polynomial functions (as shown in [36]),
this property is related to the classical Weierstrass
approximation theorem, which assures us that
polynomial approximation can get arbitrarily close to
any continuous function as the polynomial order is
increased. However, we prefer to use a more general
version of this theorem.

Theorem 1 (Spline Universal Approximation):
Suppose that the input universe of discourse U is a

compact set in R”. Then, for any given real
continuous function g(x) on U and arbitrary small



482 Dane Baang, Julian Stoev, and Jin Young Choi

positive & >0, there exist a spline f(x) such that

sup| f(x)-g(x)|<e.
xelU

That is, the spline functions are universal approxi-
mators.

Proof [of Theorem 1, outline]: Let Y be the set of
all spline functions. It is shown in [36], that they can
be alternatively represented as a piecewise polynomial
functions on the same knot sequence. Using this
piecewise polynomial property, it can be easily shown
that three conditions required in the Stone-Weierstrass
Theorem are satisfied. It follows from the Stone-
Weierstrass Theorem [37] that Splines are universal
approximators. O

4. SPLINE-BASED PLANT
PARAMETERIZATION

Consider the sub-class of the system (1) with the
structure

X, = Xy
X =x,+f(¥)+gu,n-m<i<n-—],
x, = 1,(»)+g,(0u,

y=X.

+ (M, 1<i<n-m-1,0<m, m<n,

®)

Assumption 1: The f(¥),1<i<n are partially

known smooth functions. In such case, f,(y) can be

decomposed into  f,(y) =v.(¥)+ f,(¥), where v,(y)
contains the known terms in f(y) and Z(y) are

uncertain - perhaps with unknown functional structure
or nonlinear dependence on physical parameters. This
design formulation permits to use the available prior
physical or expert information about f; (¥), and f(»)

can be approximated by neural networks, or more
generally, by any kind of universal approximator.

Since the functions j_ﬁ(y), 1<i<n use the same
input variable y, a single network with multiple

outputs may be used. In this paper, we use B-splines.
Define

F3) =L,0)ses [, (6)

Assumption 2: All unknown functions in the
vector (6) will be approximated using B-splines
defined on the same knot sequence Y.

As a result of Assumption 2, the same B-spline basis
can be used to represent each uncertain function in
F(y) as a linear combination of B-splines. Let

ae€ R” be a vector containing the unknown spline
weights. Then

F(y)=¥ (»)a+F(y),

M
Y. =18, ... B, (¥)],

where 7 is nxn identity matrix and F(y) is the

inherent error existing in any approximation. As
mentioned in Remark 1, for some particular value of
y,where y, <y <y,,,only k(spline order) number

of B, (»), 1<i<gq are active (non-zero).
Assumption 3: g,,  (»),0<k<m are partially
known functions. It is assumed, that g,,,  (¥) can
be represented as g, ,(»)=b,,0(), 0<k<m
with b

m—k >

unknown constants, and o(y):R—R a
known function.

Let b=[b,,..,b,] € R™" be vectors of unknown
constant optimal parameters related to g,(y). The

general class of systems (5) can be represented in the
form (1).

~ 0
x(t) = Ax(@) +v(y) + f () + ¥, (y)a+ [ bil a(y)u,

y =Cx,
0 1 0
0 0 0
A= ,
00 1
0 0 .. 0

v(») =4 G) -, O f ) = [£a) - [, (0]
C=[10 ..0],

) ®)
where f,(y,u) are uncertain terms containing the
approximating and modelling errors. The functions
F(y,u) in (8) is defined in Definition 3 and can be

interpreted as the minimum approximation error,
which represents the minimum possible deviation

between the uncertain functions, f;(y) and g,,, (),

b
and their on-line approximations. Let 0::[ }
a

e R™™1 and construct the matrix

(US—
‘I’(y,u):H (p_l)( ):lo—(y)u Tn(y):lv ©)

where p is the relative degree of the system (5).
Assumption 4: For VyeR and VueR, when

using the optimal 6, the minimum
approximation error is bounded.

Definition 2: Define the approximation error

weights

/; (y,u, ) for some estimated values 6 as
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o
~fl(yﬂ
~ A ' 0 n
fud)= . |+ -v(»)-¥(r,u)b.
Erm(V)
| /()]
L & |
(10)
Remark 2: The optimal weights € are an

artificial constant quantities introduced for analytical
purposes. They minimize the approximation error

0:=arg, ... min {supyeR‘ueR | 701},

The values of & are not needed for the imple-
mentation.
Definition 3: Define the minimum approximation

error f (y,u)= ]7 (y,u,0) as the approximation error
(10) obtained when the optimal weights @ are used.

5. SPLINE-BASED SYSTEM
APPROXIMATION

The core property of the spline-based approximator
is that the active polynomial parameters are changing
abruptly when the measured plant output is moving
across different areas. This occurs, for example, when

y goes from y, <y<y, to y,<y<y,, orto
v, <y <y, These switches occur at some time
moments ¢, and we assume that it is possible to

detect the occurrence of such events and the time at
which they occur. These times are strictly increasing
sequence, {f;}, lim¢; =00

Jjoo

Remark 3: Because of the spline structure of
¥,(y) in (7) and Remark 1, it is possible to factor

Y, (y) as

‘Pa (y) = I:Onxn(ifk) MthJ P(y) Onxn(qfi) :| ’ (1 1)
where

P(y)=[y"1 y'I ... y* 1],

and the matrix M,, depends on the piecewise

index i, such that y, <y<y,,. This matrix is
performing the necessary switching and is constant for
t, <t<t,, (when the index i is not changing). The

values in this matrix M, ,, are easy to be determined

using the definition of B-splines and (4).
This computation can be performed only once off-line
because M, , depends only on the index i and can

be calculated using i and the spline node sequence
Y. We can now formulate the following Lemma,
which assumes zero approximation errors for
simplicity. These errors, however, will be included
later in the adaptive observer stability analysis.

Lemma 1: Assuming that there are no approxima-
tion errors, if the vectors a and b are known, the
plant (8) can be represented as

x(1) =x, () +x,() + x,(2), (12)
X,(8) = (A4 - KC)x, (1) +v(y) + Ky(0), (13)
x, (1) =€, ()b, (14)

m+1

Q, (1) =(4-KO)Q, (1) + {0“’;)*""*”}0(y)u, (15)

x,()=Q, (t)a, (16)

Q,0)=9,,0+Q,, @), (17)

Q,, ) =D(NQ,(t,), (18)

O (1) = (4 - KC)D(), (19)

q)(tj) = ]nxn s (20)

Q,,()=Q,), 1)
O:xn(i—k)

Q,, 0= (M, E@O) |, (22)
O:xn(q—i)

=(t) = (4 - KCO)E() + P(y), (23)

E‘(t]) = Onxnk > (24)

where K is a feedback gain matrix such that (4 - KC)
is stable, and ¢ denotes the limit ¢ = liné (t-¢).

Equation (13) represents the part of the system,
which is independent of uncertainties. Equations (23)
and (19) represent the part of the system, which is
approximated by B-splines, because (17) holds only
when splines are used. The specific form of (22) is
due to the B-spline approximation. The large zero-
filled blocks are due to the local support property of
the B-splines, as noted in Remark 1. Equation (15)
represents the part of the system, which exactly
depends on some linear parameters without switching.

Remark 4: The number of required integrators in
of the representation (12)-(24) is fixed. Only (13),
(15), (19), and (23) require integrators for
implementation. In the proposed approach, the
constant number of integrators, regardiess of approxi-
mation accuracy, is obtained because of the
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» switching performed in (22) and (21),
« resets of the initial conditions of (19) and (23),
performed in (20) and (24), respectively.
This property is specific to B-spline approximation
because of its local support property. In (11), there are
large zero blocks. The size of the nonzero block

M. P(y) is constant and does not depend on the

i
number of B-splines and parameters to be estimated.
This is not the case when using other universal
approximators without local support property. When
universal approximators without local support
property are used, the large zero blocks in (11) cannot
be guaranteed to exist and, as a result, the number of
integrators increases with the number of basis
functions. This reduced computational complexity of
the adaptive observer for system (8), when using B-
spline approximation, appears to be one of the main
contributions of this paper.

Remark 5: Equation (19) represents a calculation
of a transition matrix. It is possible to further reduce
the number of required integrators of the
representation (12)-(24) by analytical calculation of
the symbolic expression for ®(¢), given some initial

conditions. This symbolic calculation is always
possible if the eigenvalues of (4-KC) in (14) are

known. This is very often the case when the matrix
K is calculated using pole-placement design.

Proof [of Lemmal]: The proof will be given in the
form of constructive derivation of (12)-(24). The
original system (8) can be rewritten as

*(t) = (4 — KC)x(r) + v(t) + Ky(t) + ¥ (y,1)0, (25)

where K is some feedback matrix such that
(A-KC) is stable. There are two types of “external”

signals in (25):

Parameter independent signal: v(y)+ Ky(¢),

which corresponds to
x,() = (A4 - KC)x, (1) +v(y) + Ky(®).

This reflects directly (13).
Parameter dependent signal: W(y,u)6 which

corresponds to
%, () = (A — KC)x, (t) + ¥ (y,u)0. (26)
Assume that there exists a matrix Q(#), such that
x, (1) = Q(1)0. @2n
If Q(¢t) is generated using
Q(t) = (A- KC)Q(D) + ¥ (y,u), (28)

then we have the equivalence of (26) and (27). In this

can be represented as a linear

way, x,(f)
combination of the signals in the filter (28). This
approach is known as K-filter representation [40]. The
next step is to use the special properties of ‘¥'(y,u),

which are present in the case of spline-based
approximation

Q) =[Q,(0 | O

Observe that Q(f) is equivalently generated by
the filter (28), where the input of this filter is given by

Y(y,u)=[¥,(y,u) ¥, ()]

0 —i)x(m+
*Pb(y,u){ "’1‘“ ”}a(y)u,

m+1

where W (y) is defined in (7).
The first part, Q,(¢), is represented in (15).
The second part, Q,(f), can be expressed as

Q,(0)=(4-KOQ, (1) +¥,(»). (29)

This is a valid traditional approach, which was
proved very effective when the plant is modelled
based on the physical knowledge with a relatively
small number of linear parameters. However, this
approach has several important drawbacks with
universal approximators. A very important property of
the universal approximators is that the minimum
approximation error can be made arbitrary small by
increasing the complexity of the approximator. With
the complexity of the universal approximator
increasing, the number of elements in the
corresponding parameter vector and the related
columns in Q_(f) also incearses very quickly, which
increases the dynamic order of the filters and makes
the application of such methods problematic in the

real world. We can see that W ,(y), which is part of
Y(y,u) in (9), has a special spline structure (7). As
mentioned before, a large part of W, (y) is
guaranteed to contain zero elements. An equivalent

expression for F (y) containing only the non-zero
part ¥, (y) can be used as (11). It is natural to use
this large sparsity in ¥,(y). When applied to (29),
this can be rewritten as

Q,()=0,,0+Q,, ©,
Qa,o(t) =D, (N, (tj ),
Q,,O=M,, [ d0PRMr,

(i)(A—KC) =4~ KC)(D(,‘FKC) @),

(30)
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(DA—KC (tj) = Inxn’

where @, ;.,(t) is the transition matrix of

(A-KC), whichisresetats;and Q (7;) isthe state

of the filter at time #. These equations correspond to
(17)-(21). It is possible to implement €, (t) as

Qg,tj (t) = [Onxn(i—k) Mth,- E(t) Onxn(q—i)]’
E(f) = (4- KO)E(t) + P(»),
E(t)=0

nxnk?

which corresponds to (22)-(24). (]

6. ADAPTIVE OBSERVER DESIGN AND
STABILITY PROPERTIES

First, we will analyze the stability properties with
the assumption that the plant is persistently excited.
Then we will relax this assumption and will modify
the adaptation to accommodate the possible lack of
persistent excitation.

Using Lemma 1 and assuming that the values of the
parameters a and b are known, it is possible to
construct a non-adaptive observer for the system (8) in
the form

X(t)=%,(1) + X, (1) + X, (1),

x,(1) =(4- KO, (1) +v() + Ky(®),
X, (1) =, (1)b,

£,(0=9,0a.

If a and b are not known, it is often necessary
to develop an adaptive observer to restore the
information of plant states.

The idea of B-spline auto generation is introduced.
Consider the following picture.

Initial Bsplines

Y4 ¥ V2 IZl Yo ¥ ¥z Ya s ¥s
ylto——

Initial B-splines

v3 vz ¥a Yo Y1 Y2 ¥s Ya
¥

Fig. 2. B-spline auto generation with y(¢).

Assume that B-spline order is determined to be B-
spline order k. (InFig.2, k is assumed to be 4.) At

£

0°
generated because they have nonzero corresponding
weights (see the upper part of Fig. 2). The adaptation
for only these k& number of B-splines is necessary.
The other B-splines with zero corresponding weights
need not to be built at this stage. As the output y(¥)

grows up (see the lower part of Fig. 2), the additional
B-splines whose weights become nonzero are
generated. When a new spline is generated, the
dimensions of parameters, observer filter, and some
other related variables also increase. This auto
generation of B-splines according to y(f) is guaranteed
to be stopped in a finite time due to the compactness
assumption in universal approximation theorem. It is
natural to adopt this idea to reduce calculation effort
and, furthermore, to avoid the requirement for the
knowledge of measurement bounds.

Assumption 5: Assume that ‘¥ (y,u) is persistently

only k number of B-splines around y(¢,) are

exciting so that
[ @ caydr > 81, 31

where 6 and T are some positive constants.
In the following, we define some sets to decide when
to generate a new B-spline, and propose an adaptive
observer for the system (8) with B-spline auto-
generation property.

Knot sequence:

Let the knot sequence be given as Y'={y,,9

{8,0}

are unknown (possibly negative) integers with the

meaning of lower/upper bounds of the knot index i.
Update algorithm for N(¢):

M ) =M@ UL},
N(' )=N(@t)+1,

SIS0, Y, <Yy Ve SYE)<y,,t 21}, Where

If i M), then {

where ¢ >f, is every time instance when

¥ )=y, (e, the time when y(¢f) meets any knot),
9<i <v is the index from the definition of Y
when y( )=y, M() is the set containing the
knot indices of Y that y(f) has occupied up to
time 7 with the initial M(z,) = {0}, N(¥) is the number
of B-splines built up to time ¢ with the initial
N(t)=k.

Remark 6: The wupdate algorithm for N(¥)

determines when to generate a new B-spline. When
W(#) meets any knot(y(t, )=y, ), itis checked if the

knot has been occupied by y(¢) in the past, or not. If it
is a new knot, then the algorithm saves the current
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knot index i, and generates one new B-spline. In
result, related dimensions of the adaptive observer

(32) is also increased.
Adaptive observer:
(1) = £,(6) + Q0)60),
%,(1) = (4- KO)Z, (1) +v(») + Ky (1),
Q1) =(4- KO)Q(t) + ¥ (y,u),

0 = PO ()C7, 32)
P@%m&vwmk&
0, otherwise,
P(6)Q (nC" CQNP(1)
1+ aCQMNQ ()CT

P(t) = BP(t) -

where «, B are some positive scalar values,
P0)=P,, || P(t)|< R, for some symmetric positive
definite matrix F, and some positive scalar R,
and the time-varying dimensions of é(t), Q(1),
¥(y,u),and P(t) are defined as follows depending

on the scalar variable N(7).

é(t) c RN(t)n+m+1
Q(t) ERn><(N(1)n+m+])
\Pa(y,u) eRnX(N(l)n)’

‘P(y,u) = [‘I’b (y,u) \{/a (y)] c RnX(N(t)n+m+l),
P(t) e R(N(/)n+m+1)x(N(t)n+m+1).

Theorem 2: For the knot sequence Y', under the

Assumption 5 and the update algorithm for N(¢), the
adaptive observer (32) for the plant (5) represented in
the form (8), has arbitrary small parameter and state
estimation errors.

Remark 7: From the main properties of modified
least-squares update law with forgetting factor (32),
P(t) in (32) is guaranteed to be bounded and positive

definite for V¢>0, as shown in [6, p. 199].

The proof of Theorem 2 requires the following two
Lemmas, which can easily be obtained from the work
[41] with slight modification.

Lemma 2: Let y(t)=CQ() and P(t) be from

(32). If there exist positive constants T,c,c, such
that V¢

t+T T
al< [ @) x(@drsel, (33)
then the system

20 =—POx (x(0)=z(®) (34)

is globally exponentially stable.

Lemma 3: If the autonomous linear time varying
system

SO=FOS5®) (35)

is globally exponentially stable and u(¢) is bounded
by some IT>0, then z(t), driven by u(t) of the
following system

#(t) = F(1)z(t) + u(?) (36)

is also bounded. Moreover, if IT can be designed
arbitrary small, then z(f) can be driven to arbitrary

small region around the origin.

By using Lemmas 2 and 3, Theorem 2 is proved as
follows.

Proof [of Theorem 2]: For stability analysis, the

dimensions of the matrices (), Q(f), ¥(y,u), and
P(t) are increased up to their maximum values. This

augmentation does not affect their convergence
properties since it uses only additional zeros. Let

0

é(t) = é(t) ER(U—.9+1)n+m+1’

0

Q(f) =[0...0 Q(1)0...0] e R Dmmh,

B (y,u)=[¥,(»,u) 0..0 ¥ ()0...0] ¢ R™@-#DmmD,
P(t) € RS+ mmD(-8:mem)

6(t) = O(t) - 6,
() =x()—x,
5,(0)= 5,00 -,

and note that @ =0. Then using the matrix form (8),
we obtain

£(t) = (4 - KOF(@t) + P (y,u)0(t)
+ OO0t + (1, 0).
Consider the following linear combination.
£,(8) = (1) — QO().

Differenciating this combination leads to
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%, = (4- KO)F, () + Q(1)0())

+ B (,u)de) - QWO@) + F(u,6)
=(4-KO)Z, () + f (y,u,0)

+[(A= KOO+ P (3, 1) - UOGD).

Because (1) = (4 - KC)Q(r) + P(p,u) holds, we
simply have

%,(1) = (4—- KO, () + f(y,u,0), (37)

where f (y,u,0) is bounded and can be designed

arbitrary small according to properties of Universal
Approximation Theorem 1. Therefore, by using
Lemma 3, ¥,(¢)is guaranteed to be bounded and

arbitrary small. Now we study the behavior of 6().
As O= 0, we have

6(1) = P(OQ" (1)C” (v - CR(1))
= - PO ()CT C(&, (1) + AN6(®))
= - PO ()CTCQN)O(r)
—POQT (1)CTC%, (1)

According to Lemma 2 and Assumption 5, setting
7(t) = CQ(r) makes the homogeneous part of this
system globally exponentially stable. Now from
Lemma 3 and the fact that Q(¢),C,P(t),%,(¢) are

bounded and especially that %,(f) can be designed to

be arbitrary small, we conclude that 8(r) is bounded
and can be designed arbitrary small. As a result,
) =%,)+Q)0(t) is also bounded and can be
designed arbitrary small. O

Remark 8: The initial dimensions of (1),
Q(f), ¥(y,u),and P(t) are kn+m+Lnx(kn+m+1),
nx(kn+m+1), and (kn+m+1)x(kn+m+1), res-
pectively, since only k number of B-splines are built at
t =t, . Their dimensions increase as y(f) changes or,
more precisely, the knot sequence index i changes.
Note that their initial values depend on only n,m,
and pre-defined B-spline order k. This increment is
guaranteed to be stopped in a finite time because of
the compactness assumptions in the universal
approximation theorem.

The B-spline based approximation proposed in this
paper has three important advantages compared to
other universal approximators without local support
properties. These advantages are described in
Remarks 9, 10, and 11.

Remark 9: For any universal approximators, the
error can be made arbitrary small by increasing the

number of basis functions. However, the increased
number of basis functions results in high-dimension of
observer filters which requires more integrators for
implementation. This increasing complexity is
avoided in the proposed design. As mentioned in
Remark 4, the number of integrators in the filters (12)-
(24) is constant and does not depend on the number of
B-splines used for approximation. As a result of this
important property, increasing the number of B-
splines can be used to decrease the approximation
error without increasing the computational complexity
related to the observer filters. The parameterization
proposed in this paper breaks the link between the
number of integrators in the filter and the number of
basis functions, and much better approximation can be
obtained with near-constant complexity related to the
integrator numbers in the filters (12)-(24).

Remark 10: The second advantage is that the
observer (32) reduces calculation effort by avoiding
unnecessary adaptations for B-splines with zero
weights. This is possible since it starts with only &
number of B-splines around the initial output y(z,),
and then increase the dimension of itself as p(¢)

varies. In this auto-generations, only the minimal
number of B-splines with nonzero weights are
generated and the calculation for the B-splines with
zero weight is not performed.

Remark 11: In many function approximation
problems in adaptive observer design, it is commonly
assumed that the bounds of input/output measurement
is known, since the basis functions of universal
approximators are usually to be built between the
upper and lower bounds of measurement values.
Therefore, often, at least one process before control
and/or identification, is required to obtain upper and
lower bounds of y(#). Practically this process causes

additional consumption of resources depending on the
system size or complexity. When this pre-process
takes too much resource, heuristics to predict the
output bounds are necessary. This problem can be
avoided by using the proposed design. The observer
(32) increases its dimension as the value of y(?)
changes and this increment is to be stopped when
y(f) finally reaches its unknown bounds. In other

words, it automatically detects the lower and upper
bounds of 3(¢) by on-line generation of additional B-
splines. In result, the proposed observer (32) does not
require the pre-knowledge of upper and lower bounds
of y(2).

Remark 12: From the proof of Theorem 2, it is
clear to improve the performance of the observer,
taking into account the approximation errors, which
are inherently present in the model (8). According to
the Universal Approximation Theorem 1, the
approximation error can be made arbitrary small by
using finite number of B-splines, so it is possible to
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reduce the approximation error by increasing the

number of B-splines used.

* Another way to decrease the approximation error is
to increase the order of B-splines, which makes the
order of the local polynomial approximation higher,
thus increasing the approximation precision.

+ The B-spline approximation error can be reduced

by a proper selection of the knot sequence Y [36].
« Looking at (36), one can see that the use of a strong

feedback gain matrix also decreases the influence

of the approximation errors on X,(f), which

improves the convergence of the observer states.

Remark 13: In the case of other universal
approximators without local support property, like
radial-basis function, the properties in Remarks 8-10
cannot be obtained since any of the weights cannot be
guaranteed to be zero and B-spline auto-generation
scheme can not be applied.

Remark 14: Assumption 5 is restrictive, but
necessary to obtain bounded parameter estimates in
the presence of approximation errors. Several
approaches are known to modify the observer and
obtain bounded parameter estimates even without
persistently exciting plant input/output. These
methods are discussed in depth in [5,6]. The & -
modification can be used, but other choices are also
possible.

Remark 15: The methods to improve the observer
convergence properties mentioned in Remark 12 can
be applied in this case too.

7. SIMULATION

A numerical simulation was performed to verify the
proposed design. The system we consider is a single-
link robot arm coupled to a DC motor with a flexible
joint.

gt
7—(01(’),

do(t)  —mgd K K ¢2()
% 7 sin(g, (¢)) aa@) (ﬂ(ﬂ

d

¢2(t) ,0),

da)z(t) K K . ¢2(t)
w-ik@m AW)JNMO
@) R._. K 1

e Lz(t) 7 o, (1) + Lu(t),

(38)
where ¢@,w, and ¢,,@, are the angular positions
and velocities of the arm and the motor shaft, i and u
are the motor armature current and voltage, Ji, J2, F1,
F, are the inertia and viscous friction coefficients, K is
a spring constant, K, and K}, are the torque and e.m.f.

constants related with the DC motor, R is the armature
resistance and L is the armature inductance, m is the
arm mass, d is the position of the arm’s center of
gravity, N is the gear ratio and g is acceleration of
gravity. System output is defined as y(¢) = ¢4 (r) and
the reference signal is random. The system physical
parameters for the simulation are selected as

=0.5kg/s, J| = 3kg.m2, F, =0.5kg /s,

Js =1kg.m2, m=2kg, g=9.8m/s2,
d=0.5m, K =100, K, =10, R=1Q,
L=0.1H, N =1.

The considered system is relaxed at 7, =0. This

system is feedback linearizable and transformable into
output feedback adaptive form (5). The interested
readers are referred to [38, p. 315] for details. We
assume only that it is possible to transform the system
into form (5), which was shown to be possible. The
objective of this simulation is the design of B-spline
based adaptive observer that tracks system states by
using only the information of input/output signal,

where f(y) (sinusoidal function of y) in (6), and
b,(=1/L)
unknown.

We then proceed to apply the B-spline design as
presented. The step of the knot sequence for the

in Assumption 3 are assumed to be

observer is selected as Y=[k%], where k are

integers starting from 0. On this knot sequence, B-
splines order was set to be 5. Note that the knowledge
of the bounds of y(¢) is not necessary in this

simulation. Uniformly random signal is used as
reference and the output feedback gains for the K-
filter both for the physical observer and for the B-
spline observer are selected so that the poles are at [-
5,-5,-5,-5,-5]. The simulation was performed for 200
seconds for the plant (38) and uniformly random
signal with maximum value of 27 was applied as
the reference. The input-output data shown in Fig. 3
was selected to be persistently exciting, so (32) are
used in this simulation. Similar input/output shapes
repeated after 30 seconds.

Actual and observed states produced by the
adaptive B-spline based observer are shown on Fig. 4.
At about 90 seconds, the estimated states arz starting
to converge close to the real ones quite fast.
Especially the output of the plant, which is the first
state, converges almost immediately. After 100
seconds, all the states from the adaptive observer are
very close to the real states of the plant in output
feedback form and its convergence improves very
little.

Estimated parameters representing the B-spline
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L s L n
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Fig. 3. Plant output y(f) and output u(¢) used in the
simulation (0 <¢<30).
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Fig. 4. States x,=y=¢,x, =0, %, =¢,, X, =0,
x, =i, from the B-spline observer in solid

lines and actual states in dashed/dotted lines
(0 <1 <100).

weights of the adaptive B-spline based observer are
shown on Fig. 5. The B-spline weights dramatically
change at about 90 seconds in this figure. So it is
reasonable that the estimated states in Fig. 4 also
converge to real ones quite fast at this time point.

The number of automatically generated B-splines is

described in Fig. 6. At y(f, =0), five number of B-

splines [B4,5 ), B-3,5 ), sz,s ), B (y)’Bo,s (»)] around
zero are initially generated since the B-spline degree
was defined as 5. As p(¢) varies, the number of B-
splines with nonzero weights increases up to 13. No
more increment occurred after 150 seconds. Therefore
the lastly generated B-spline is B; ;(y) and, in result,

b

the total set of the B-splines generated in the
simulation is

[B_is(¥)ses By s (9)ses By s (¥)]-
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Fig. 5. B-spline weights (0 <¢<200).
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Fig. 6. Number of automatically generated B-splines
(0 <1 <150).

From the knot sequence definition Y =[k %], one

can see that the B-splines B, (y), i=9 were not

generated in this simulation because the maximum
. I 9
values of y(¢) is about 6.35, which is less than Tﬂ

Therefore, it is verified that the proposed adaptive
observer automatically detects the bounds of y(¢)

and generates minimal number of necessary B-splines
on-line. In result, the proposed method does not
require the pre-knowledge of the output bounds.

8. CONCLUSION

Using B-splines as universal approximators, we
have obtained a plant parameterization, which permits
the construction of an adaptive observer. The first
particular property of this parameterization is that the
number of integrators in the observer filters in this
design does not depend on the number of parameters
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in the plant parameterization. This appears to be a
beneficial property especially because the number of
such parameters tends to be very high for the
approximator based designs. The second particular
property is that it automatically generates minimal
number of necessary B-splines as the output value
varies. By this property, the proposed observer also
reduces calculation effort by neglecting unnecessary
spline adaptation with zero weights, and, furthermore,
does not require the pre-knowledge of output bounds,
which often consumes additional efforts in system
identification problems. Possible direction for future
work includes the exploration of approximation errors
influence on the observer and auto-positioning of B-
spline centers.
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