• 제목/요약/키워드: Uncertain Nonlinear Systems

검색결과 254건 처리시간 0.031초

Modified RHKF Filter for Improved DR/GPS Navigation against Uncertain Model Dynamics

  • Cho, Seong-Yun;Lee, Hyung-Keun
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.379-387
    • /
    • 2012
  • In this paper, an error compensation technique for a dead reckoning (DR) system using a magnetic compass module is proposed. The magnetic compass-based azimuth may include a bias that varies with location due to the surrounding magnetic sources. In this paper, the DR system is integrated with a Global Positioning System (GPS) receiver using a finite impulse response (FIR) filter to reduce errors. This filter can estimate the varying bias more effectively than the conventional Kalman filter, which has an infinite impulse response structure. Moreover, the conventional receding horizon Kalman FIR (RHKF) filter is modified for application in nonlinear systems and to compensate the drawbacks of the RHKF filter. The modified RHKF filter is a novel RHKF filter scheme for nonlinear dynamics. The inverse covariance form of the linearized Kalman filter is combined with a receding horizon FIR strategy. This filter is then combined with an extended Kalman filter to enhance the convergence characteristics of the FIR filter. Also, the receding interval is extended to reduce the computational burden. The performance of the proposed DR/GPS integrated system using the modified RHKF filter is evaluated through simulation.

A Study of Construct Fuzzy Inference Network using Neural Logic Network

  • Lee, Jae-Deuk;Jeong, Hye-Jin;Kim, Hee-Suk;Lee, Malrey
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 2005
  • This paper deals with the fuzzy modeling for the complex and uncertain nonlinear systems, in which conventional and mathematical models may fail to give satisfactory results. Finally, we provide numerical examples to evaluate the feasibility and generality of the proposed method in this paper. The expert system which introduces fuzzy logic in order to process uncertainties is called fuzzy expert system. The fuzzy expert system, however, has a potential problem which may lead to inappropriate results due to the ignorance of some information by applying fuzzy logic in reasoning process in addition to the knowledge acquisition problem. In order to overcome these problems, We construct fuzzy inference network by extending the concept of reasoning network in this paper. In the fuzzy inference network, the propositions which form fuzzy rules are represented by nodes. And these nodes have the truth values representing the belief values of each proposition. The logical operators between propositions of rules are represented by links. And the traditional propagation rule is modified.

바이러스-진화 유전 알고리즘을 이용한 퍼지 모델링 (Fuzzy Modeling Using Virus-Evolutionary Genetic Algorithm)

  • 이승준;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.432-441
    • /
    • 2000
  • 본 논문은 기존의 수학적인 모델링으로는 만족스러운 결과를 얻기 어려운 복잡하고 불확실한 비선형 시스템에 대한 퍼지 모델링 기법을 다룬다. 유전 알고리듬은 어느 정도 최적해를 전역적으로 찾을 수 있기 때문에 퍼지 모델링시에 파라미커와 구조를 동정하기 위하여 사용되었다. 하지만, 유전 알고리듬은 개체군이 유전적 다양성을 잃었을 경우 조기 수렴한다는 문제점이 있으며 바이러스-진화 유전 알고리듬은 이러한 지역수렴에 대한 방아닝 될 수 있다. 따라서, 본 논문에서는 바이러스 이론이 적용된 VEGA를 퍼지 모델링 할 때 이용할 수 있는 방법을 제안한다. 이 방법에서는 지역정보가 개체군 내에서 교환됨으로써 유전적 다양성을 유지하게 된다. 마지막으로, 본 논문에서 제안한 방법의 우수성과 일반성을 평가하기 위해 몇 가지의 수치적 예제를 제공한다.

  • PDF

불확정 표적 모델에 대한 순환 신경망 기반 칼만 필터 설계 (Application of Recurrent Neural-Network based Kalman Filter for Uncertain Target Models)

  • 김동범;정대교;임재혁;민사원;문준
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.10-21
    • /
    • 2023
  • For various target tracking applications, it is well known that the Kalman filter is the optimal estimator(in the minimum mean-square sense) to predict and estimate the state(position and/or velocity) of linear dynamical systems driven by Gaussian stochastic noise. In the case of nonlinear systems, Extended Kalman filter(EKF) and/or Unscented Kalman filter(UKF) are widely used, which can be viewed as approximations of the(linear) Kalman filter in the sense of the conditional expectation. However, to implement EKF and UKF, the exact dynamical model information and the statistical information of noise are still required. In this paper, we propose the recurrent neural-network based Kalman filter, where its Kalman gain is obtained via the proposed GRU-LSTM based neural-network framework that does not need the precise model information as well as the noise covariance information. By the proposed neural-network based Kalman filter, the state estimation performance is enhanced in terms of the tracking error, which is verified through various linear and nonlinear tracking problems with incomplete model and statistical covariance information.

Robust investment model for long range capacity expansion of chemical processing networks using two-stage algorithm

  • Bok, Jinkwang;Lee, Heeman;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1758-1761
    • /
    • 1997
  • The problem of long range capacity expansion planing for chemical processing network under uncertain demand forecast secnarios is addressed. This optimization problem involves capactiy expansion timing and sizing of each chemical processing unit to maximize the expected net present value considering the deviation of net present values and the excess capacity over a given time horizon. A multiperiod mixed integer nonlinear programming optimization model that is both solution and modle robust for any realization of demand scenarios is developed using the two-stage stochastic programming algorithm. Two example problems are considered to illustrate the effectiveness of the model.

  • PDF

Sliding mode control with adaptive VSS observer

  • Chen, Yi-Feng;Tsutomu Mita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1924-1929
    • /
    • 1991
  • The conventional sliding mode control and variable structure control (VSC) of nonlinear uncertain system are well known for their robust property and simplity of control law. However, the use of them is only pardonable on the assumption that the upper-bound of parameter variation or nonlinearity is known and that the complete information about state is available. Though the former has been solved with adaptive robust control theory recently, the latter seems not to be solved. In this paper, we try to solve this problem using the technique of VSS adaptive robust control theory. That is, we propose a VSS adaptive observer and a sliding mode control incorporated with this observer. We can prove the robust stability of the closed system applying the Lyapunov's second method.

  • PDF

구간 시스템의 최대평가함수 해석 (An analysis of the worst performance index in the interval system)

  • 김우성;김석우;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.984-987
    • /
    • 1996
  • We consider a feedback control system including interval plant where uncertain parameters expressed in the hyperrectangular box X. Here we define the maximum value of the integral of the error(ISE) as the worst performance index(WPI) due to the plant parameter uncertainty. Suppose that the closed loop system retains robust stability and it belongs to type I. Then we show that the WPI occurs only on the exposed edges of Q. In particular, it is also shown that if ISE is a convex function relative to X, the WPI is attained at one of vertices of X. Some examples are given.

  • PDF

새로운 고장진단 기법을 이용한 불확실한 비선형 시스팀의 고장 허용 제어 (Fault Tolerant Control of Uncertain Nonlinear Systems Using New Fault Diagnosis method)

  • 황영호;송민철;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2158-2160
    • /
    • 2004
  • 본 논문에서는 불확실한 비선형 시스템에 대하여 새로운 고장진단 방법을 이용한 고장 허용 제어기를 설계한다. 잔류 신호는 비선형 관측기 구조를 이용하여 얻을 수 있다. 고장 성분은 neuro-fuzzy 근사기로 추정한다. 제안된 고장 허용 제어기는 강인 제어기와 고장 성분을 보상할 수 있는 보상제어기로 구성된다. 여기서 제안된 고장진단 방법은 고장으로 인해 발생되는 보상제어기의 크기로 고장을 진단함으로써 고장 전후의 강인 제어기의 특성을 계속유지 할 수 있게 설계하였다. 본 논문에서 제안한 고장 허용 제어기의 성능은 컴퓨터 모의실험을 통하여 증명하였다.

  • PDF

불확실성을 포함한 비선형 시스템에서 학습접근을 이용한 고장 진단 설계 (Design of Fault Diagnosis Using a Learning Approach in Uncertain Nonlinear systems)

  • 송민철;황영호;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2245-2247
    • /
    • 2004
  • 본 논문에서는 미지의 유계를 가진 불확실성을 포함한 비선형 시스템에 대한 고장 진단 설계를 제안한다. 제안된 고장 진단 필터는 비선형 관측기 설계 기술에 기초하여 설계되며, 신경망을 이용하여 고장 성분과 불확실성 성분을 추정하고 추정된 불확실성의 상한값을 고장 진단에 이용한다. 제안된 근사기는 불확실성과 고장 함수를 추정함으로써 고장 검출뿐만 아니라 고장 진단을 확인할 수 있도록 설계된다. 모의실험을 통해서 제안된 고장 진단 설계의 성능을 검증하였다.

  • PDF

로보트 매니퓰레이터에 대한 비선형 제어 (Nonlinear control for robot manipulator)

  • 이종용;이승원;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.263-268
    • /
    • 1990
  • This paper deals with the manipulator with actuator described by equation D over bar(q) $q^{...}$ = u-p over bar (q, $q^{.}$, $q^{..}$) with a control input u. We imploy a simple method of control design which bas two stages. First, a global linearization is performed to yield a decoupled controllable linear system. Then a controller is designed for this linear system. We provide a rigorous analysis Of the effect of uncertain dynamics, which we study using robustness results In time domain based on a Lyapunav equation and the total stability theorem. I)sing this approach we simulate the performance of controller about a robotic manipulator with actuator.tor.r.

  • PDF