• 제목/요약/키워드: Uncertain

검색결과 2,791건 처리시간 0.031초

시간지연을 고려한 ATM 망에서의 체증제어를 위한 $H_{\infty}$ 제어기 설계 (Robust $H_{\infty}$ State Feed back Congestion Contro1 of ATM for lineardiscrete-time systems with Uncertain Time-Variant Delav)

  • 강래청;정우채;김영중;임묘택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2161-2163
    • /
    • 2004
  • This paper focuses on congestion control for ATM network with uncertain time-variant delays. The time-variant delays can be distinguished into two distinct components. The first one that is represented by time-variant queueing delays in the intermediate switches is occurred in the return paths of RM cells. The next one is a forward path delay. It is solved by the VBR Model which quantifies the data propagation from the sources to the switch. Robust $H_{\infty}$ control is studied for solving congestion problem with norm-bounded time-varying uncertain parameters. The suitable robust $H_{\infty}$ controller is obtained from the solution of a convex optimization problem including terms of LMIs.

  • PDF

불확실 다변수 시스템을 위한 적분 슬라이딩 면을 갖는 다입출력 가변 구조 제어기 (A MIMO VSS with an Integral-Augmented Sliding Surface for Uncertain Multivariable Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.950-960
    • /
    • 2010
  • In this paper, a multi-input multi-output(MIMO) integral variable structure system with an integral-augmented sliding surface is designed for the improved robust control of uncertain multivariable system under the matched persistent disturbance. To effectively remove the reaching phase problems, the integral augmented sliding surface is proposed. Then for its design, the eigenstructure assignment technique is introduced to. To guarantee the designed performance against the persistent disturbance, the stabilizing control for multi-input system is also designed to generate the sliding mode on the integral sliding surface. The stability of the global system together with the existence condition of the sliding mode are investigated and proved for the case of multi input system in the presence of uncertainty and disturbance. The reaching phase is completely removed in proposed MIMO VSS by satisfying the two requirements. An example and computer simulations will be present for showing the usefulness of algorithm.

불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험 (Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation)

  • 한명철;하인철
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.

불확정 시스템에서의 기동검출 및 추적 (Maneuvering detection and tracking in uncertain systems)

  • 유경상;홍일선;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.120-124
    • /
    • 1991
  • In this paper, we consider the maneuvering detection and target tracking problem in uncertain linear discrete-time systems. The maneuvering detection is based on X$^{2}$ test[2,71, where Kalman filters have been utilized so far. The target tracking is performed by the maneuvering input compensation based on a maximum likelihood estimator. KF has been known to diverge when some modelling errors exist and fail to detect the maneuvering and to track the target in uncertain systems. Thus this paper adopt the FIR filter[l], which is known to be robust to modelling errors, for maneuvering detection and target tracking problem. Various computer simulations show the superior performance of the FIR filter in this problem.

  • PDF

시변 시간 지연을 갖는 불확실한 이산 시간 선형 시스템의 견실 안정성 (Robust Stability of Uncertain Discrete-Time Linear Systems with Time-Varying Delays)

  • 송성호;박섭형;이봉영
    • 제어로봇시스템학회논문지
    • /
    • 제5권6호
    • /
    • pp.641-646
    • /
    • 1999
  • This paper deals with the robust stability of discrete-time linear systems with time- varying delays and norm-bounded uncertainties. In this paper, the magnitude of time-varying delays is assumed to be upper-bounded. The sufficient condition is presented in terms of linear matrix inequality. It is also shown that the robust stability of uncertain discrete-time linear systems with time-varying delays is related with the quadratic stability of uncertain discrete-time linear systems with constant time delay.

  • PDF

A model-based fault diagnosis in uncertain systems

  • Kwon, Oh-Kyu;Sung, Yul-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1210-1215
    • /
    • 1990
  • This paper deals with the fault diagnosis problem in uncertain linear systems having undermodelling, linearization errors and noise inputs. The new approach proposed in this paper uses an appropriate test variable and the difference between system parameters which are estimated by the least squares method to locate the fault. The singular value decomposion is used to decouple the correlation between the estimated system parameters and to observe the trend of parameter changes. Some simulations applied to aircraft ergines show good allocation of the fault even though the system model has significant uncertainties. The feature of the approach is to diagnose the uncertain system through simple parameter operations and not to need complex calculations in the diagnosis procedure as compared with other methods.

  • PDF

선형 슬라이딩 평면의 개선된 존재 조건 (An Improved Existence Condition of Linear Sliding Surfaces)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.851-855
    • /
    • 2007
  • This paper deals with the problem of designing a linear sliding surface design for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. We show that our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.

정합조건이 만족되지 않는 불확실한 다변수 계통에 대한 슬라이딩 모드 제어기의 설계 (Design of sliding mode controller for uncertain multivariable systems in the absence of matching conditions)

  • 천희영;박귀태;김동식;임성준;공진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.439-445
    • /
    • 1990
  • All models of dynamical systems invariably have some measure of uncertainties associated with some of their dynamics. The recent approaches to establish robustness of stabilizing feedback control against the possible uncertainties have a serious limitation, that is their applicability only to the systems that satisfy the matching conditions. Such conditions are rarely met in general applications. If a particular system satisfies the matching conditions, the addition of an actuator will destroy the satisfaction of such conditions. In this paper, we develop robust control algorithm for uncertain multivariable systems in which the matching conditions are not necessarily met. We empoly Lyapunov's second method to derive robust stabilizing controllers which guarantee asymptotic stability against prescribed uncertainties. The derivation consists of transforming the original uncertain system to controllable canonical form and constructing a constant switching surface by designing the closed-loop characteristics as a function of the uncertainties. Numerical examples are discussed as illustrations.

  • PDF

A Robust Adaptive Controller for Markovian Jump Uncertain Nonlinear Systems with Wiener Noises of Unknown Covariance

  • Zhu, Jin;Xi, Hong-Sheng;Ji, Hai-Bo;Wang, Bing
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.128-137
    • /
    • 2007
  • A robust adaptive controller design for a class of Markovian jump parametric -strict-feedback systems is given. The disturbances considered herein include both uncertain nonlinearities and Wiener noises of unknown covariance. And they satisfy some bound-conditions. By using stochastic Lyapunov method in Markovian jump systems, a switching robust adaptive controller was obtained that guarantees global uniform ultimate boundedness of the closed-loop jump system.

예측제어기를 이용한 불확실한 시간지연 보상 (Compensation of the Uncertain Time Delays Using a Predictive Controller)

  • 허화라;이장명
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(5)
    • /
    • pp.13-16
    • /
    • 2002
  • In this paper, we newly propose a predictor model which is a method to overcome the time-varying delay in a system and we verify that the predictor model is well suited for the time-delayed system and improves the stability a lot through the experiments. The proposed predict compensator compensates uncertain time delays and minimizes variance of system performance. Therefore it is suitable for the control of uncertain systems and nonlinear systems that are difficult to be modeled. The simulation conditions are set for the cases of various input time delays and simulations are applied for the 2-axis robot arms which are drawing a circle on the plane. Conclusively, the proposed predict compensator represents stable properties regardless of the time delay. As a future research, we suggest to develope a robust control algorithm to compensate the random time delay which occurs in the tole-operated systems.

  • PDF