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A Robust Adaptive Controller for Markovian Jump Uncertain
Nonlinear Systems with Wiener Noises of Unknown Covariance

Jin Zhu, Hong-sheng Xi*, Hai-bo Ji, and Bing Wang

Abstract: A robust adaptive controller design for a class of Markovian jump parametric -strict-
feedback systems is given. The disturbances considered herein include both uncertain
nonlinearities and Wiener noises of unknown covariance. And they satisfy some bound-
conditions. By using stochastic Lyapunov method in Markovian jump systems, a switching
robust adaptive controller was obtained that guarantees global uniform ultimate boundedness of

the closed-loop jump system.

Keywords: Markovian jump nonlinear systems, robust adaptive control, Wiener noise, uncertain

nonlinearity.

1. INTRODUCTION

The passed decades have witnessed substantial
research activities in the development of Markovian
jump systems, and much effort is directed towards
jump linear systems [1]. With many linear problems
(Kalman filtering [2,3], LQG [4,5], Slide-mode
control [6] etc.) solved, more attention is focused on
the study of Markovian jump non-linear systems.
Some results can be found in the works of Aliyu [7]
and Zhu [8]. However, noise and disturbance are not
considered in these works.

On the other hand, many physical systems do be
disturbed by noises. Thus Markovian jump nonlinear
systems disturbed by Wiener noise (or Brown motion)
have been the subject of numerous studies in recent
years. For this class of jump systems, Mao [9] gives
the sufficient condition to ensure existence and
uniqueness of the solution; Yuan [10,11] introduce the
notions of asymptotic stability and robust stability;
Boukas [12] presents the notions of mean square
stability. However, their work mainly focus on the
notions and definitions of stochastic stability, not the
practical controller design in jump systems. At the
knowledge of the authors, the practical control design
for Markovian jump nonlinear systems with stochastic
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noises has received little attention in literature.

In this paper, we are interested in the practical
switching robust adaptive controller design for
Markovian jump nonlinear systems disturbed by
Wiener noise. As parametric-strict-feedback systems
could rep-resent many practical systems in real world,
and many other nonlinear systems could be converted
to this form via mathematical transformation [13]. We
choose the Markovian jump parametric-strict-
feedback systems as the research model. Considering
that modeling errors, parametric uncertainty and time
variations may exist, the systems structure uncertainty
is thus taken into account. Here the covariance of
Wiener noise is assumed to be unknown but bounded,
and the structure uncertainty is assumed to satisty
some growth conditions [14]. With the control law
and the parameter adaptive law designed, all signals
of the closed-loop system are globally uniformly
ultimately bounded.

The rest of this paper is organized as follows:
Section 2 briefly introduces some mathematical
notions and the Markovian jump nonlinear system
model. The robust adaptive controller for the system
is then proposed in Section 3. In Section 4, an
example is shown to illustrate the validity of the
controller design. Finally, conclusions are drawn in
Section 5.

2. PROBLEM AND PRELIMINARIES

2.1. Notation
Throughout the paper, unless otherwise specified,

we denote by (QQF,{F.}.,,P), a complete probability
space with a filtration {F,},, satisfying the usual
conditions (i.e., it is right continuous and F;, contains
all p-null sets). Let |-|p stand for the p-th Euclidean
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norm for vectors. The superscript 7 will denote
transpose and we refer to Tr() as the trace for
matrix. In addition we use °(P) to denote the space

of Lebesgue square integrable vector.
Let r(¢),r >0, be aright continuous Markov chain

on the probability space taking values in finite state
space S={1,2,---,N}, and we introduce O(¢)=[D,(?),
D, (1)--+, D N(t)]T the indicator process for the
regime r(¢), as:

1 r=j
® (1) = . (1)
0 rih=j,jesS
and @(f) satisfies the following equation:
D) =D(1y) + HJ: O(s)ds + M(¢) 2)
0

with M(f) =[ M, (6), My (1),---,M ()] ,an N-dimen-
sional [, -martingale satisfying M (t)eL2 (P) and
IT=[r}] the chain generator, an N xN matrix.
The entries nkJ-,k, j=12,--- N are interpreted as

transition rates such that

P(rit+dty=j|r(t)=k)
ﬂ,th + o(dt) if k+j (3)
1+ mydivo(d) if k=,

where df>0. Here 7;; >0(k # j) is the transition rate

from k to j. Notice that the total probability axiom
imposes 7y, negative and

N
> m,; =0,VkeS.
7=

Consider a stochastic differential equation with
Markovian switching of the form

dx = f(x,t,r(t))dt + g(x,t,7(t))dw (4)

on ¢>0 with initial data x(0)=x,€R” and
r(0)=kyeS, where f:R"xR,xS—>R", g:R"
xS — R™™ x=x(t) is system state vector, @(f)=
(0,07, , Oy, )T is an independent m-dimensional
Wiener noise defined on the probability space, with
covariance E{dw-dw’ }=Y(1)Y(t)" dt, where Y(7)

is an unknown boundedmatrix-valued function.
Furthermore, we assume that the Wiener noise w(?) is

independent of the Markov chain #(f). For the
existence and uniqueness of the solution, we shall

impose a hypothesis [9]:

(H) Both f and g satisfy the local Lipschitz condition
and the linear growth condition. That is for each
h=12,---, thereisan L; >0 such that

| f(x,t,k)= f(n,t,k) | v ] g(x,t.k) — g(y,1,k) |
<Ly |x—y|

for all (t,k)eR, xS and those x,yeR" with |x|
v|iyigh
Moreover there isan v >0 such that:

| [t B V] gx6k) [<v(+]x])

forall (x,r,k)e R" xR _xS.

In general, the hypothesis (H) will guarantee a unique
local solution to (4).

Let C*'(R"xR,xS) denote the family of all

functions F(x,t,k) on R"xR_xS which are

continuously twice differentiable in x and once in 7.
Furthermore, we will given the stochastic differ-
rentiable equation of F(x,7,k):

Fix any (xg,l,k)eR" xR, xS and suppose x(?)

is the unique solution to (4). By the generalized Ito
formula, we have

OF (x,s,7(5)) ds

F(x,t,r(t)) = F(xy,ty,k) + -Eo s

+ -Eo &x’;&f(x,s,r(s))ds
NGA ,
+ fo %Tr[YTgT (x, S,I‘(S))L;;;Z—(S—))

+f OF (x,s,7(s))
0 ox

g(x,8,7(sHY]ds
g(x,s,r(s))dw

N
# [ D LF s ) = F s, k01D 5).
j=l

(5)
According to (2), the differential equation of the
indicator ®(¢) is as following:

dO() =T1D()dt + dM(2). (6)
Submit (6) into (5) and notice that
N
D myF(xt,k)=0. VkeS.
j=1
Therefore, the stochastic differentiable equation of

F(x,t,k) 1is given by the following:

dF (x,1,k) =

OF(4utoK) 4 OFCOLK) o vy
or ox
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82F(x 1,k)
x

N
+3 mF(xt, j)dt + aF(_;”Q
X

J=1

+%Tr[YT gl (x,1,k) g(x,t,k)Y]dt
g(x,t,k)ydo (7)

N
+ Y [F(x,t, j) = F(x,t,k))dM 116}

j=1
We take the expectation in (7), so that the
infinitesimal generator produces [9]
t.k
LF (et k) = OF (x,t,k) aF(x t,k) featk)
ot
1 *F
+—Tr[YTgT(x,r,k)Mgu,r,k)Y] ®
2 ox?
N
+z ﬂ]gF(x,t,])
Jj=1

Lemma 1 (Martingale Representation) [15]: Let
B(@)=[B/(®),B,(t), -, By(¥)] be N-dimensional standard

Wiener noise. Suppose M(¢) is an IE‘,N -martingale
(w.rt. P) and that M(¢) e ? (P) for all £>0. Then

there exists a stochastic process W e I? (., P),
such that

dM(ty="Y -dB(¢). )
Lemma 2 (Young’s inequality): For any two
vectors x,y e R”, the following holds
g? 1
Ay |l +— |y, (10)
p gs?

where ¢>0 and the constants p>1,g>1 satisfy
(p-Dg-H=1

2.2. Problem description
Consider the following Markovian jump uncertain
nonlinear systems with Wiener noises:

di = x;,1dt + (it () 07 dt + A, (5 1,7 (1)) dt
+g(xptr (@) do

dx, = udt + @, (x,t, /() 0*dt + A, (x,t,r(O)dt  (11)
+g,(x,1,7(1) do

y=x, i=12,---,n-1,

x,)7 €R" is the state vector,

ueR

where x=(x,%,,
T . .
2 (xp,%, %), is the input, and

yeR is the output of the system. 0" e R’ is a

here x,=

vector of unknown constant parameters; The Markov
chain r(t) and m-dimensional Wiener noise « are as

defined in Section 2.1. @;(x%,t,7(f), g (x:t,7 (1)
are vector-valued smooth functions. A;(x;#,r(t)) is

an unknown function which could be due to model-
ing errors, parametric uncertainty, time variations in
the systems, or a combination of these. And it maybe
different with each regime r(¢). It is assumed that

the control designer has, at least, partial knowledge of
bounds for the function uncertainty A;(x;¢,7()). In
particular, we assume that

Ai(fiatar(t) =k)£'//:pi(3?i7r(t) =k)7

. (12)
Vx;eR',VteR, ,VkeS,

where p (%,r(t)) e C'(R' xS,R") is a known smooth
function and 1//;‘ >0 is a constant parameter, which

is not necessarily known. Note that y; is not unique,
since any aj >y, satisfies in-equality (12). To avoid

confusion, we define 1//,-* the smallest(non-negative)

constant such that (12) is satisfied. In this paper, the
equilibrium x=0 is assumed a common one for all the

regimes, which means ¢;(0,7,k)=0, g;(0,£,k)=0,
VkeS. With ¢ (x,6r®), g &ut,r(0), A(Xnt
r(t)) satisfying hypothesis (H), Markovian jump
system (11) has a unique solution.

3. CONTROL DESIGN

Now we begin to design a robust adaptive
controller for system (11), where the parameter 6"

and w; need to be estimated. Denote the estimation

of 6° with 6, and the estimation of y; with w,.
First we employ a coordinate transformation:

Zi = xi - ai—l (fi—bea l//jatsr(t) = k)a (13)

where o =0, Vke S, and the new coordinate is
Z=(7,25,"++,z,). For simplicity, we just denote
4 |(Xi-1,0,v;,0.k), 9(xpt,k), g (xntk), AKX
t.k) by a0, @(k). gk), and A(k).
According to (7), the (13) can be written as:

dz; =[x;41 +@f (k)8 + Ay (K)ldt + g] (k)do — da;_y (k)
={z;1 + o (k) + 9] ()O" + A, (k)}dt

_Oa,(k)
ot

aaz l(k) 0d i aaz l(k)

Jj= ]
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_ii o (k)

R

i—1 2
1 Z Ll_(@ T(k)YYqu(k)dt

[¥;01 + 0] (08" + A (k)]dt

2pq_1 &x 0%,

0 k
S g A (di+ [T () Z 28 o7 i
j=1 ]
+Z (et (k) = @y (NAM (). (14)
j=1

By Lemma 1, there existsa ¥ e [* (F,,P) and an N-
dimensional standard Wiener noise B(f), such that

dM(f) = WdB(t), where E{¥¥T}=¢¢’ <O<owand

Q is a positive bounded constant. Moreover, we define
an N-dimensional vector

Li(k) & [y (k) — o (D, (k) — a4 (2),
(k) — a1 (N)].

Therefore (14) is as following:

dz; =21 + (k) + ] (0" + A, <k)]df

_aai—l(k) aaz 1 (6 4 Odr — Z da;_ 1(k)
ot oy,

i-1

-2 aa’ 1@y [0 + 0] (k)8 1dt

j=1 ]

LS Zan® Ty

2p =1 ap q !

Y oa; (k) T
Z i ()t +(g] (k) - Z ——g; (R)ldo

j=1 Jj=1 J
+T;(k)PdB,

(15)

where A;(k) is:
AR 2 Ay (k) - Z a“'x‘(k)A (*)
J

and according to inequality (12), it is easily seen that
there exist a series of continuous function p (x;k)

e C(R;xS,R,), suchthat
| A; () 1<y p(7,,k),Yx; € R,V € R, ,Vk € 5.(16)

Choose a Lyapunov function of the form

Zz—i—

T
6’+§—— , 17
25, Xi (17)

where y > 0,0, >0 are constants. 6=0"-6 and g,
= t//iM —y; are the parameter estimation errors, where

;//,-M 2 max{y; ,1//? }, and y/? are given positive
constants.

We set out to choose the function ¢;_;(k) and
adaptive functions to make LV non-positive. Along the
solutions of (15), we have

L . O (k)
LV:Z;z? (2,0 + o, () + 9T (k)0 *—a;—
80{1 k L By (k) y .
1( ) Z 3 ! '—Zﬂkjaz’—l(])
j=1 oV j=l
i—1
8a~_ k *
-3 By 4] (061 A0
i=1 J

J
i-1 A2 k
_% Z oa oK) 1( ) T(k)YTqu(k)}

p.q=1
e zz[,ac) Z '1(") o7 (e’
L2,(k)- z ”(") g, (0]
J
+52z3r,~(k>¢¢TF?<k>
i=1

_léTg'_Zn“LZ.V',

Y i-1 Oi .

0a;_y (k)
ot

Y334 1
<27 {(Z5i +—)z (k) -
i=1 i—1

e (k) 5 iaa _1(k)

o4 A oy

o (ke

i-1 N
oa;_((k) .
-> “_éxl_xjﬂ - Z”kj%-](])

Jj= Y

Az} Z [——a;"al(k)]2 g kg, (k)
P,q=1

gr (g, () + wzl o] (k) p, (k)

+Zmz [T, (T (o) }+27Q oY

i=l
—ér[;é—Zz 7,(k)1- 2[—m, 7 Ay (k)]
i=1

i=1 O
(18)
with

L3P k
71(k) = @y (k) - Z )

9; (k)

J
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pi(k) = £,(K) - Za“’ 1O 0,

]

In (18), the following inequalities are used, which
can be reduced from Young’s inequalities and norm
inequalities with the help of changing the order of
summations or exchanging the indices of the
summations:

n n-1 4 n-1
3 3 34 11 4
2. %% S5, 8% +— Zinl
i-1 43 456
no3 4,
= 2(1513 + 2 )Zi )

where oy =, 6, =0, and J;>0,i=12,--,n-1.

d O*a; y(k
DED) e e T, 0)

n i-1 k
<y 3 50 axé})f IR 1,0 Rl g, ()

3 S (a % 1("))2 T (kg (k)g] (k)g, (k)

i=1 pq=1

T2
|Y9£ | (n—-Dn(2n-1)
Zz &7 (k) - 26“' 1®) o7y
f
7 [g;(h) Z 218 g o
j
i1
<3 g, (k) - Za“’ 10 o oy
i=l J'
L2, (k) - Za"" 1(") g, (0] +ZT|YYT|
j H
52 2T, (g T (k)
i=1

< %i 22T,(k)QrT (k)

n

<3 g T, (0 + 2
Par) 1164 2

where A>0,24 >0, >0 are design parameters,

(n Dn(2n - 1)
964 16,ul

(19)

According to [14], we suggest the following adaptive
laws:

6= 1> Zrk) - 166", 20)
i=1
v, =olzi@ (k) - m(y; —w)), 1)
z; p k)
@,(0) = B,(k)-tan Py 22)

i
Here [>0,m; >0,5 > 0,6?0 e R? are given constants.
Denote

Bik)=y; @;(k). (23)

Substituting (20),(21),(23) into (18), and we suggest
the virtual control as

) 3 LN Oa;_y (k)
a; (k) =—c;z; (451' +45-4_ )z; + P
5 (Faa®p r
-4z 5_1[ o, g5 (K2, ()gg (F)g, (k)

— iz P () p (O — oz T (0T ()T
i-1
L0 (k) 5 3 Oa;_4 (k)

v, (k) -] (k)0

06 A f
i-1 N
oa;_ (k) .
%+ 2w () = Bik).
j=l J j=l
(24)
However, if adaptive law (20) is adopted, ]

concerning with z,---,z, exists in (24). Therefore it
is impossible to get ¢;(k) directly. For this reason,
the following transitions are necessary:

i 23 aat l(k)

5+ Y D) -10-6)

=34 “ggk) Ay

= ft
=ng a“g;(k); 7,k)
7 S da (k
PR 20, )
—iznllzf Mgé(k) 16 -6°)
8a k
_ Zl ll()jzl iy
+(Z 2 “( 00O, ky-16-6%) (25)
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Substituting (25) into (24), and the virtual control
design is

(k) =—¢;z;

4 .
- (351'3 + 14 )z; + Ot ()
4 45}, ot

oa, 1 (k
1y 2% 1( )szr](k)ﬂfz 2 f ‘( ) 7.(k)
Jj=1 j=1

50! 1(k) 0 | 0a; 1(k)
—==(0-0")+
sz ¥, Vi

-7/ (k)e—mz[pf (K)o, (0)F = oz, [T; (0T ()

o° k
-4z Z[ B o7 g, (e (g, )
pg=1
5 6a,~_1(k>

N
e+ 2 % () = Bk,
7=l

j=1 J
(26)
where ay(k)=0,c; >0,i=12,--,n with the actual
control :
u(k) = a,(k), 27

then the infinitesimal generator of V becomes :

LV <=3 ¢z =312 (k) + 23 yya,(k) — 27 A (k)
i=1 i=1

- 9
—;cimi(wi—l//?)]+leT(9—90)+16" Q> +z|Alt

=—ic +157(0 - 0°)+ Q +r|Al

+ 3 A0 ~ (v, + 1)z @, () +Z m i (w; —wi)
i=1 i=1

15700+ [2A ()~ 2y (k)
i=1

9
0 vr|Alt.
Ho

n
= —Z CiZ?
i=1

+ Y ma -y +
i=1
(283)
Consider (16), (22), we get
z; 3A, J(k) -

vl D@,k <y} |2 k) | —w )} 2wy (k)

<y |2} pik) |~y M 2} p,(k)tanh] ,p,(k)]

l
and according to

0<| 77| -ntanh(1) < 0.2785¢ < %g,
&

such that

2N 0 -y (k)<= Jwita. (29)

By using the following inequalities:

197(9—90)——%@%— 10-6%7 (-6

+lz(9* o 6" -6%

<——19T9+ 1(9 -0 (6" -6%)

1 1
l//z)_ - ZZ m(l//z )2

mi%i(l//z B

1 0
+§mz’(l//zM_l//i)
< 1 2,;.1 ( M _ 0)2
_—Eml.;(i zmi v; v,

therefore

LV < ZC
LS Ly g
2‘_ Vi 7 P i

——19T9+ 1(9 -6%T " -6%

+1|A
6;1 O, TN
_—cV+K, (30)

where

m=min{m;), c=min(dc;,ly,mo;)

1< 1<
Kzgz 5i‘//iM +EZ mi(%‘M _‘//io)2 +Z|A|4
i=l1 i=l
1

g e-60y 2 2.

2 164,

Theorem 1: Considering Markovian jump nonlinear
system(11), if adaptive law (20), (21) and controller
(27) is adopted, the equilibrium of the closed-loop
system is globally uniformly ultimately bounded in
the 4th-moment. Furthermore, for any given & >0,
there is

im E(Z ) <e. (31)

Proof: According to the conclusion in [11], we have

K
5t
C

EV<e” [V(xoatoarO)

and there is

I o Lorg o b o2 1 4
V= 422+7/96’+Z ;(,_4221.

i=1
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Take expectation in the above equation
_ 4
E(Z [§)<4EV <4e ™[V (x0,10,7) — =]+ =, (32)
¢ <

which means that Z=(z,z,,---,z,) is

uniformly bounded in 4th-moment, thus x = (x;,x,,

globally

*+,x,) is globally uniformly bounded in 4th-moment.

Moreover, 37 >0, ift>T, there is 4e “[V(x,,
4 8 .
to,ro)—f] S—K, and E|Z |3S—K. So for any given
¢ ¢ c
&>0, appropriate control design parameters c;,/,m;

8k
can be chosen to guarantee — < &.
c

Therefore when ¢>7T,
4 _ 8Kk
E|Z|;<s—<e. (33)
c

Remark 1: From Theorem 1 above, it could be
seen that all signals in the closed-loop system are
globally uniformly ultimately bounded in the 4th-
moment. According to the knowledge of stochastic
stability [15], the closed-loop jump system (11) is thus
stable in probability.

Remark 2: According to (26), only the bound of
noise @ and uncertainty A; are needed, and we do
not care for the detailed information of them.
Meanwhile the increase of c¢;,/,y,m,0; will reduce
the effect of noise and structure uncertainty. As long
as these design parameters are large enough, the
system output y=x could be as close to the
equilibrium as possible, disregarding the difference of
system equations caused by regime r(¢) switching
stochastically.

4. EXMAPLE

Consider a 2-order Markovian jump nonlinear
system with the regime transition space S ={1,2},

and the transition rate matrix is

n{‘: _25}.

The system is as follows:

dag = xdt+&(x,t, r(t))H* dt + A(xp,t,r(2))dr,
de, = udt+&(xt, r(t))H*dt + gy (x,t,r(t))dw,
y = xl .
Here

gl(xl,tal) = xlz’ gl(xbt’z):xla

E(x, ) =x, &(x,t,2)=xsinx,,
2 (x,t,1) = sinxy, g,(x,t,2)=1-2cosx,,

where 6" is an unknown parameter and A(x;,z,7(¢))
is an unknown bounded disturbance. For simulation
purposes, we let 6" =2, A(x,t,1) = 0.6sin2¢t, A(x;,
t,2) =cos4t, and the noise covariance Y =2.

The control law and the adaptive law are taken as
follows (here o) =1)
Case 1: The system regime is 1:

() =—(q + %)Zl - -4 1),

@) =~(cr + Pz ~ 0o (00 - P17 () + Zea (1)

+71(0 - 0")x? - By (1)
+71(0-0")x - B, (1)
LAY
X1

—pzi(simey)* = 125l () - ()],

6 = ylzir () + 23, (1) - 10 - 6°)),

vy = oylzpwy (1)~ my (v — )]s

vy = oy[Z3wy (1) — my(wy ~ ¥,

xy —@ (D + o (D) + 71204 (2),

where

71 =%, Zp =% —a(l),
a=x, p)=1,

3
_ zi pi()
@y (1) = (tanh( “Z L B =@y (1),
1
= Oy (1) 3 357y, 2
1) = = +=+20x + 1- DI},
IZOE 2, =l ¢ 2 X 5 [ -ai D]|
oo (1
,()=x— al()xf,
X1
2 7,(1)

@, (1) = p,(Dtanh(
B =y,@,()

Case 2: The system regime is 2:

)

&

@)=~ + D)3 -1 (0 42)

Q) =~(er 4507 a0~ w1735 2) + 2]

+71(0-6°)x, - B,(2)
_0(2)
o

X —@ 2y + 7 (1)
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+7p040(2) — 4z (1 - 2cosx, )4
~tozlo () -1,
6 =y[z1,(2) + 237,(2) - 16 - 6°)],
v = o1z w () —my (py — ),
Yy = oalz3wy (2) — my(wry — y)],

where

Z1 =%, 2 =% —a(2),
71(2) = x, }_?1(2)=1
@,(2) = B, (2)tanh( al ’; AP,

1
£(2) =y @(2),

o
7,(2)- “1(2)| ot 20+ ;‘”‘ 1-a2)])
1
T5(2) = xysinxy — 61 (2) X1,
X

3
@32) = pyQtanh 2222
&
£ (2) =yrm,(2).

In computation we take design constants ¢ =
=5 0"=1 vy =yp3 =1, oy=oy=y=1, m=
my=1=1, =50, p, =25, & =6, =04, choose
x =87, xy=-2, 6(0)=0,
wi(0) = w,(0)=0 and the time step is 0.01s.
The simulation figures are as follows:

In simulation, Fig. 1 shows the regime switching

with time; Fig. 2 shows the corresponding input
control u, and Fig. 3 shows the time response of the

state variation (solid line for state x; or output y, and

dashed line for x,). As could be seen from the
figures, the system regime may switch stochastically

the initial values as

system regime r(t)

o E 100 50 200 250 300
t/0.0ls

Fig. 1 Regime switching with time t.
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Fig. 2. System control input u with time t.
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Fig. 3. System states variation with time t.

such that the control input will vary with the regime,
thus they are not continuous to time t. However, at the
time-point of regime switching, the system states will
have an abrupt “jump”, but they are still continuous to
time t, and this is an important quality of Markovian
jump systems. The simulation results illustrate the
global uniform ultimate boundedness of the closed-
loop system.

5. CONCLUSION

The robust adaptive control of Markovian jump
uncertain nonlinear parametric-strict-feedback systems
disturbed by Wiener noises of unknown covariance
was investigated. A robust adaptive control scheme
was obtained by using a stochastic Lyapunov method
and backstepping techniques, which guarantees that
the closed-loop system is globally uniformly
ultimately bounded.

Backstepping design for non-jump stochastic
system has been developed before by Deng [16]. In
contrast to the design of Deng, the main difference is
the introduction of the Markovian stochastic
switching, thus the difficulties in controller design lie
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in follows:

1.

The introduction of stochastic Markovian
switching added the complexity of system analysis
largely. Consider an N-regime Markovian jump
systemsand it consists of N different subsystems.
For each regime £, the actual controller x(k) would
present a different expression. Therefore the
regime-dependent controller u(k) represents the
stochastic switching controller between the N
different subsystem. In the infinitesimal generator
for Markovian jump systems(11), the coupling of
regime 7 is added, thus the switching

controller #(k) concerns not only with the current
regime k, but with all the regime j=1,2,---, N.

Since the generalized Ito formula only deals with
problems of stochastic systems perturbed by
Wiener noise, it would be hard to handle the
martingale process caused by Markovian
switching. In this paper the martingale is
converted to the correspondent Wiener noise B(¢)
so that infinitesimal generator could be applied.
Thus in the switching controller u(k), the term

/lzzi[Fi(k)Fl-T (k)]2 is included to reduced the
effect of martingale.

From above, it could been seen Deng’s controller
would regarded as a specific example of our work in
which system regime N =1. Thus this paper extends

the

controller design for stochastic nonlinear systems

to a more general form. And the design accuracy
could be ensured with appropriate parameters chosen.
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