• 제목/요약/키워드: Unbiasedness property

검색결과 4건 처리시간 0.019초

A Note on the Asymptotic Property of S2 in Linear Regression Model with Correlated Errors

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.233-237
    • /
    • 2003
  • An asymptotic property of the ordinary least squares estimator of the disturbance variance is considered in the regression model with correlated errors. It is shown that the convergence in probability of S$^2$ is equivalent to the asymptotic unbiasedness. Beyond the assumption on the design matrix or the variance-covariance matrix of disturbances error, the result is quite general and simplify the earlier results.

Mixed $H_2/H_{\infty}$ Finite Memory Controls for Output Feedback Controls of Discrete-time State-Space Systems

  • Ahn, Choon-Ki;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.529-534
    • /
    • 2005
  • In this paper, a new type of output feedback control, called a $H_2/H_{\infty}$ fnite memory control (FMC), is proposed for deterministic state space systems. Constraints such as linearity, unbiasedness property, and finite memory structure with respect to an input and an output are required in advance to design $H_2/H_{\infty}$ FMC in addition to the performance criteria in both $H_2$ and $H_{\infty}$ sense. It is shown that $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FMC design problems can be converted into convex programming problems written in terms of linear matrix inequalities (LMIs) with some linear equality constraints. Through simulation study, it is illustrated that the proposed $H_2/H_{\infty}$ FMC is more robust against uncertainties and faster in convergence than the existing $H_2/H_{\infty}$ output feedback control schemes.

  • PDF

Minimum Variance FIR Smoother for Model-based Signals

  • Kwon, Bo-Kyu;Kwon, Wook-Hyun;Han, Soo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2516-2520
    • /
    • 2005
  • In this paper, finite impulse response (FIR) smoothers are proposed for discrete-time systems. The proposed FIR smoother is designed under the constraints of linearity, unbiasedness, FIR structure, and independence of the initial state information. It is also obtained by directly minimizing the performance criterion with unbiased constraints. The approach to the MVF smoother proposed in this paper is logical and systematic, while existing results have heuristic assumption, such as infinite covariance of the initial state. Additionally, the proposed MVF smoother is based on the general system model that may have the singular system matrix and has both system and measurement noises. Thorough simulation studies, it is shown that the proposed MVF smoother is more robust against modeling uncertainties numerical errors than fixed-lag Kalman smoother which is infinite impulse response (IIR) type estimator.

  • PDF

Quantile Regression with Non-Convex Penalty on High-Dimensions

  • Choi, Ho-Sik;Kim, Yong-Dai;Han, Sang-Tae;Kang, Hyun-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • 제16권1호
    • /
    • pp.209-215
    • /
    • 2009
  • In regression problem, the SCAD estimator proposed by Fan and Li (2001), has many desirable property such as continuity, sparsity and unbiasedness. In this paper, we extend SCAD penalized regression framework to quantile regression and hence, we propose new SCAD penalized quantile estimator on high-dimensions and also present an efficient algorithm. From the simulation and real data set, the proposed estimator performs better than quantile regression estimator with $L_1$ norm.