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A Note on the Asymptotic Property of s? in Linear Regression
Model with Correlated Errorsl)

Seung—-Chun Lee?)

Abstract

An asymptotic property of the ordinary least squares estimator of the disturbance
variance is considered in the regression model with correlated errors. It is shown that

the convergence in probability of S? s equivalent to the asymptotic unbiasedness.
Beyond the assumption on the design matrix or the variance-covariance matrix of
disturbances error, the result is quite general and simplify the earlier results.
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1. Introduction

Consider a familiar regression model,

V= x,’B+€,. t=1,2,...,n (11)
where v, is an observation, x;a £ -vector of nonstochastic regressors, B a k -vector of
unknown parameters and ¢, a disturbance error. For the model, the method of least squares
plays a central role in the inference of parameters. However, the correlated disturbance error
reduce the efficiency of the Ordinary Least Squares(OLS) estimators. Thus many researchers
have studied the efficiency of OLS estimator relative to Generalized Least Squares(GLS)
estimator, or the limiting behavior of OLS estimator. Although the prime interest for this topic
might be the OLS estimator of regression parameter itself, Kramer (1991), Kramer and
Berghoff (1991), Baltagi and Kramer (1994), Song (1994) and Lee and Kim (1996) have studied

the asymptotic properties of OLS estimator of disturbance errors under various assumptions
on the variance-covariance matrix of disturbance errors or the nonstochastic regressor matrix.

In all those articles, the asymptotic unbiasedness or the convergence in probability of S? were
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discussed separately. Thus once they proved the convergence in probability of S’ , the
asymptotic unbiasedness was proved by different frame work.

It is well known that the L, -convergence is more stringent convergence concept compared
with the convergence in probability. Thus in general, it required more sever assumptions to
establish the L, -convergence. Also it is not easy to show directly that a certain estimator

converges in L, to the variance of the disturbance errors. This make it hard to establish the

necessary conditions for L; -convergence of S? . On the other hand the necessary conditions

for the convergence in probability can be somewhat generalized.
In this note we will show the equivalence of L, -convergence and convergence in

probability by the uniform integrability of the sequence of S? . Thus once we obtain the

convergence in probability result, the asymptotic unbiasedness of S? can be achieved.

2. The Result

Let E(eue,’) =02V, where &,= (€1, €&,...,6,)" . Neudecker(1977) provided the useful

inequality for proving the asymptotic unbiasedness of S? ,

1 N s? 1 n
L %< E( i )s L > a0 @1)

0<

where A; 's are the increasing sequence in magnitude of eigenvalues of V, . Since the
upper bound of E(SZ/ 025) tends to 1 as #—o0 , we can show the asymptotic unbiasedness,
if the mean of »— & smallest eigenvalues of V, tends to 1 as #—>co. Hence the proof of
asymptotic unbiasedness rely on the eigenvalues of V, . However, it is not easy to
calculate the eigenvalue of V, in general. Once we have the result of the convergence in
probability, this situation can be overcome by utilizing simple probabilistic results.

Let {X,}s~; and X be random variables defined on a probability space (2, F,P) . It is
well known that X,—»X in L, if and only if X,—X in probability and E|X,|"—EIX|® .
Also suppose that X, is uniformly integrable. If X,—X in probability, then E|X|<{oo and

X,—»X in L; . Now Si , as a function of » , is a sequence of random variables defined
on some probability space. If we can show that the sequence Sf, is uniformly integrable, the

convergence in probability and L; convergence can be used interchangeably.

However, in spite of simple definition of uniform integrability, it is not easy to check
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whether a sequence is uniformly integrable or not. Thus we refer some propositions which
can be find in the contexts of most probability theory such as Chung (1974) and are useful in
what follows.

Proposition 1. Let {Y,} be a sequence of identically distributed random variables with

E(lY,){c . Then {Y,} is uniformly integrable.

Proposition 2. Let {X,} and {Y,} be two sequences of random variables on a probability
space (R, F,P) . Suppose that {Y,} is uniformly integrable and |X,J<|Y,] for all n .

Then {X,} is also uniformly integrable.

Proposition 3. Let {X,} be uniformly integrable. Then {% X,} is uniformly integrable as
=

well.

Now we are ready to prove our assertion.

Theorem 2.1. Consider model (1.1). If &, t=1,2,... are identically distributed random

variables with finite second moment, then the sequence of OLS estimator {Si} is uniformly

integrable.

Proof: Since y,— E(y.) ’s are identically distributed random variables, so are (y,— E(y))?

and {(v;— E(y))?}{~, is an uniformly integrable sequence. Hence by Proposition 3,

{% ;( y,— E(y,)?} is uniformly integrable.

Let y, be an nXx1 vector of observations and X, be corresponding design matrix. We
have seen that %( Vu— XaB) (yu— X,B) is an uniformly integrable sequence. Define

Px=X, (X, X, X, and My =1I—Px,. Then the OLS estimator of disturbance
variance 02 can be written as Si=y ,Mx yn/(n—Fk) . Since Py, is a nonnegative definite

matrix and X, Mx =0 , we have

0 < % y'nMXynz %(yn_ XnB)'MX_( Yn— Xnﬁ)

< —%i‘(yn_ XuB)'(yn— XnB)-
1

This shows that 712‘ ¥ .Mxy, is uniformly integrable. But o Y Mxy,— S:~0  almost
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surely, we can conclude that Si is uniformly integrable as well.

Example 2.1 Suppose that _}z_ &y € ? 2 and An™ =o(n) where A;™ is the largest

— 3
cigenvalue of V, . Then (n—k)S:i=¢, ¢,— &, Px.€, and

E(e, Px &) = ditr(Px V,)
<R

we can conclude -71,[ &, Px,e,~0 in probability and hence Sz,-—mze in probability. This result

is due to Kramer and Berghoff (1991). Because of the uniform integrability of S%, The

convergence in probability also implies that S?, is an asymptotic unbiased estimator of oze .

Example 2.2 Suppose the diturbance error in model (1.1) is generated by
&=10g_,+6, t=2,3,...,n
where §; ‘s are independently and identically distributed random variables with mean 0, and
variance o5, Cov(es8)=0 for all #>s, and |8]<1 . The variance-covariance matrix of
€, 1s given by
1 6 6 - ¢!
6 1 8§ - 67
Var(e)=c:Va=ce| 6 6 1 - 6"
6n:—l 0n:—2 0n:—3 1
It is well known that the eigenvalue of V, is bounded above. Also it can be shown that

Var(e, e,/n) =o(n) if E(&)<oo . Thus S converges to o2 in probability. Hence by the

Theorem 2.1, Si—m‘i in L; which in turn implies that SE, is asymptotically unbiased.

This might simplify the earlier result of Song(1994).

3. Strictly Stationary Error Process

Consider model (1.1). Suppose that the sequence of the disturbance error is strictly

stationary with &,= Zéa,-a,_,- , Where &, is a sequence of iid random variables with mean
=

zero and finite variance, and @; is an absolutely summable sequence with Z;a,z"#o for
£

|21<1 in the complex plane. It is well known that the spectral density of &, is bounded
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from below and bounded from above. One such process is the well-known ARMA process.

For the model, Lee and Kim (1996) showed the asymptotic unbiasedness of S? under fairly
mild assumptions on regressor matrix. Note that, in view of Theorem 4.2.1. and Theorem
6.2.1. of Fuller (1976), the conditions in Example 2.1 are satisfied if we assume the normality
of &, . Thus a more stringent convergence result can be obtained without the assumption on

regressor matrix. That is, Sz, converges in L; , and hence it is an asymptotic unbiased
estimator. An example of this kind is shown in Example 2.2. when the error process are
produced by e,= 0e,—;+ 8, . See also Song(1994).
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